Skip to main content
Log in

Influence of Anodization Condition on Hydrophobicity, Morphology, and Corrosion Resistance of 17-4PH Stainless Steel

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The anodization process was applied to 17-4PH stainless steel to modify its surface and to enhance hydrophobicity. The effects of various H2SO4/glycerin electrolytes and applied voltages on the water contact angle, the surface morphology (roughness), and corrosion resistance were investigated. It was observed that a high ratio of an H2SO4/glycerin electrolyte and high applied potentials resulted in an increase of a contact angle and an enhancement of the surface roughness. The highest contact angle was found to be up to 122.3°, when anodizing at 40 V using 70/30 of H2SO4/glycerin as electrolyte. Any further increase in the ratio of H2SO4/glycerin tended to reduce the contact angle. An electrochemical test showed that corrosion resistance was dependent on the hydrophobicity and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Costa, I., Franco, C.V., Kunioshi C.T., and Rossi, J.L., Corrosion resistance of injection-molded 17-4PH steel in sodium chloride solution, Corrosion, 2006, vol. 62, p. 357.

    Article  Google Scholar 

  2. Liu, D., Liu, D., Zhang, X., Lui, C., et al., Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process, Mater. Sci. Eng. A., 2018, vol. 726, p. 69.

    Article  Google Scholar 

  3. Zhang, M. and Chu, Q., Heat treatment of 17-4PH stainless steel, Heat Treat. Met., 2012, vol. 37, no. 9, p. 8.

    Google Scholar 

  4. Suri, P., Smarslok, B.P., and German, R.M., Impact properties of sintered and wrought 17-4 PH stainless steel, Powder Metall., 2006, vol. 49, no. 1, p. 40.

    Article  Google Scholar 

  5. Szewczyk-Nykiel, A., The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 PH stainless steel, Tech. Trans., 2014, vol. 13, p. 85.

    Google Scholar 

  6. Gülsoy, H.Ö., Salman, S., and Özbek, S., Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder, J. Mater. Sci., 2004, vol. 39, no. 15, p. 4835.

    Article  Google Scholar 

  7. Sobral, A.V.C., Ristow, W., Correa, O.V., Franco, C.V., et al., Corrosion behaviour of injection moulded 316L and 17-4PH stainless steels in a sodium chloride solution, Key Eng. Mater., 2001, vols. 189–191, p. 667.

    Article  Google Scholar 

  8. Zhao, E., Li, Y., Gao, L., Yang, S., et al., Anti-corrosion properties of a bioinspired superhydrophobic surface on stainless steel, Int. J. Electrochem. Sci., 2017, vol. 12, p. 9855.

    Article  Google Scholar 

  9. Wu, Y., Zhao, F., Zhang Z., and Li, L., Study on the preparation and properties of micro-nano structure on the surface of 304 stainless steel by one-step anodizing, J. Nano Res., 2019, vol. 60, p. 42.

    Article  Google Scholar 

  10. Ajeel, S., Ahmed, B., and Baker, Y.M., Electro-chemical measurements of anodizing stainless steel type Aisi 304, Int. J. Mech. Eng. Technol., 2013, vol. 4, p. 63.

    Google Scholar 

  11. Latthe, S.S., Sudhagar, P., Devadoss, A., Kumarb, A.M., et al., A mechanically bendable superhydrophobic steel surface with its self-cleaning and corrosion-resistant properties, J. Mater. Chem. A, 2015, vol. 3, no. 27, p. 14263.

    Article  Google Scholar 

  12. Rafieazad, M., Jaffer, J.A., Cui, C., Duan, X., et al., Nanosecond laser fabrication of hydrophobic stainless steel surfaces: The impact on microstructure and corrosion resistance, Materials, 2018, vol. 11, no. 9, p. 1577.

    Article  Google Scholar 

  13. Minagar, S., Berndt, C.C., Wang, J., Ivanova, E., et al., A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater., 2012, vol. 8, no. 8, p. 2875.

    Article  Google Scholar 

  14. Martin, F., Del Frari, D., Cousty, J., and Bataillon, C., Self-organisation of nanoscaled pores in anodic oxide overlayer on stainless steels, Electrochim. Acta, 2009, vol. 54, no. 11, p. 3086.

    Article  Google Scholar 

  15. Supriadi, S., Suharno, B., Widjaya, T., Ayuningtyas, S.T., et al., Development of superhydrophobic material SS 17-4 PH for bracket orthodontic application by metal injection molding, IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 299, no. 1, p. 012096.

  16. Wang, J.H., Duh, J.G., and Shih H.C., Corrosion characteristics of coloured films on stainless steel formed by chemical, INCO and a.c. processes, Surf. Coat. Technol., 1996, vol. 78, nos. 1–3, p. 248.

    Article  Google Scholar 

  17. Pochon, M. and Mantel, M., Improvement of stainless steels adhesive bonding using anodizing treatments, Rev. Métall., 2000, vol. 97, no. 5, p. 627.

    Article  Google Scholar 

  18. Muratore, F., Baron-Wiecheć, A., Gholinia, A., Hashimoto, T., et al., Comparison of nanotube formation on zirconium in fluoride/glycerol electrolytes at different anodizing potentials, Electrochim. Acta., 2011, vol. 58, no. 1, p. 389.

    Article  Google Scholar 

  19. Vera, M., Colaccio, Á., Rosenberger, M., Schvezov, C., et al., Influence of the electrolyte concentration on the smooth TiO2 anodic coatings on Ti–6Al–4V, Coatings, 2017, vol. 7, no. 3, p. 39.

    Article  Google Scholar 

  20. Lee, B.G., Choi, J.W., Lee, S.E., Jeong, Y.S., et al., Formation behavior of anodic TiO2 nanotubes in fluoride containing electrolytes, Trans. Nonferrous Met. Soc., 2009, vol. 19, no. 4, p. 842.

    Article  Google Scholar 

  21. Bervian, A., Ludwig, G.A., Kunst, S.R., Beltrami, L.V.R., et al., The influence of the glycerin concentration on the porous structure of ferritic stainless steel obtained by anodization, Dyna, 2015, vol. 82, no. 190, p. 46.

    Article  Google Scholar 

  22. Khadiri, M., Elyaagoubi, M., Idouhli, R., Koumya Y., et al., Electrochemical study of anodized titanium in phosphoric acid, Adv. Mater. Sci. Eng., 2020, vol. 2020, p. 5769071. https://doi.org/10.1155/2020/5769071

    Article  Google Scholar 

  23. Ajeel, S.A., Puteh, R., and Baker, Y.M., Experimental study of anodizing process for stainless steel type 304, Wulfenia, 2013, vol. 20, no. 3, p. 347.

    Google Scholar 

  24. Domínguez-Jaimes, L.P., Arenas Vara, M.Á., Cedillo-González, E.I., Ruiz Valdés, J.J., et al., Corrosion resistance of anodic layers grown on 304L stainless steel at different anodizing times and stirring speeds, Coatings, 2019, vol. 9, no. 11, p. 706. .https://doi.org/10.3390/coatings9110706

    Article  Google Scholar 

  25. Zhang, B., Ni, H., Chen, R., Zhan, W., et al., A two-step anodic method to fabricate self-organised nanopore arrays on stainless steel, Appl. Surf. Sci., 2015, vol. 351, p. 1161. https://doi.org/10.1016/j.apsusc.2015.06.083

    Article  Google Scholar 

  26. Poinern, G.E.J., Ali, N., and Fawcett, D., Progress in nano-engineered anodic aluminum oxide membrane development, Materials, 2011, vol. 4, p. 487.

    Article  Google Scholar 

  27. Lin, Y., Lin, Q., Liu, X., Gao, Y., et al., A highly controllable electrochemical anodization process to fabricate porous anodic aluminum oxide membranes, Nanoscale Res. Lett., 2015, vol. 10, no. 1, p. 495. https://doi.org/10.1186/s11671-015-1202-y

    Article  Google Scholar 

  28. Zhang, D., Wang, L., Qian, H., and Li, X., Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions, J. Coat. Technol. Res., 2016, vol. 13, no. 1, p. 11.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to Dr. Aunchalee Manonukul from the National Metal and Materials Technology Center, Thailand, for providing the 17-4 PH stainless steel samples.

Funding

This work was financially supported by the research fund of Mae Fah Luang University, Thailand, grant no. 631B01014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kosasang.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosasang, O., Rattanawong, S. & Chumphongphan, S. Influence of Anodization Condition on Hydrophobicity, Morphology, and Corrosion Resistance of 17-4PH Stainless Steel. Surf. Engin. Appl.Electrochem. 58, 393–401 (2022). https://doi.org/10.3103/S1068375522040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522040081

Keywords:

Navigation