Skip to main content
Log in

Experimental Analysis of Corona Current Density Distribution and Electric Field at Variable Temperatures in Electrostatic Precipitator

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In blade-to-plane electrostatic precipitators at variable temperatures, the electric field and the current density distributions of the negative DC corona were experimentally analyzed, and the corona discharge was used as the source of ionization. In this research, an experimental cell was designed and built to adjust the temperature from 20 to 46°C within the cell. The current density-voltage characteristic and the radial distance distribution of the current density of an electrostatic blade-to-plane precipitator were measured over a temperature interval. Based on the Tassicker and Townsend models, the electric field and the onset voltage were determined. With the rise in temperature, the corona current obtained at the collector plate has been observed to increase, but the onset voltage decreased. The applied voltage and temperature greatly affected the corona current density characteristics and the electrical field. If an exponent of 4.6 to 5 for a negative corona discharge is taken, the DC density distribution is satisfied, then the current density distribution follows the well-known Warburg theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Mizuno, A., Electrostatic precipitation, IEEE Trans. Dielectr. Electr. Insul., 2000, vol. 7, no. 5, p. 615.

    Article  Google Scholar 

  2. Fujishima, H., Morita, Y., Okubo, M., and Yamamoto, T., Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators, IEEE Trans. Dielectr. Electr. Insul., 2006, vol. 13, no. 1, p. 160.

    Article  Google Scholar 

  3. Jaworek, A., Krupa, A., and Czech, T., Modern electrostatic devices and methods for exhaust gas cleaning: A brief review, J. Electrost., 2007, vol. 65, no. 3, p. 133.

    Article  Google Scholar 

  4. Chang, J.S., Next generation integrated electrostatic gas cleaning systems, J. Electrost., 2003, vol. 57, nos. 3–4, p. 273.

    Article  Google Scholar 

  5. Ait Said, H., Nouri, H., and Zebboudj, Y., Effect of air flow on corona discharge in wire-to-plate electrostatic precipitator, J. Electrost., 2015, vol. 73, no. 1, p. 19.

    Article  Google Scholar 

  6. Ait Said, H., Nouri H., and Zebboudj, Y., Analysis of current-voltage characteristics in the wires-to-planes geometry during corona discharge, Eur. Phys. J. Appl. Phys., 2014, vol. 67, no. 3, p. 30802.

    Article  Google Scholar 

  7. Podlinski, J., Niewulis, A., and Mizeraczyk, J., Electrohydrodynamic flow and particle collection efficiency of a spike-plate type electrostatic precipitator, J. Electrost., 2009, vol. 67, nos. 2–3, p. 99.

    Article  Google Scholar 

  8. Wang, X. and You, C., Effect of humidty on negative corona discharge of electrostatic precipitators, IEEE Trans. Dielectr. Electr. Insul., 2013, vol. 20, nos. 2–3, p. 1720.

    Article  Google Scholar 

  9. Patiño, D., Crespo, B., Porteiro, J., Villaravid, E., et al., Experimental study of a tubular-type ESP for small-scale biomass boilers. Preliminary results in a diesel engine, Powder Technol., 2016, vol. 288, no. 2, p. 164.

    Article  Google Scholar 

  10. Kaci, M., Ait Said, H., Laifaoui, A., Aissou, A., et al., Investigation on the corona discharge in blade-to-plane electrode configuration, Braz. J. Phys., 2015, vol. 45, no. 6, p. 643.

    Article  Google Scholar 

  11. Robledo-Martinez, A., Characteristics of DC corona discharge in humid, reduced-density air, J. Electrost., 1993, vol. 29, no. 2, p. 101.

    Article  Google Scholar 

  12. Aissou, M., Ait Said, H., Nouri, H., and Zebboudj, Y., Analysis of current density and electric field beneath a bipolar DC wires-to-plane corona discharge in humid air, Eur. Phys. J. Appl. Phys., 2013, vol. 61, no. 3, p. 30803.

    Article  Google Scholar 

  13. Nouri, H., Zouzou, N., Moreau, E., Dascalescu, L., et al., Effect of relative humidity on current–voltage characteristics of an electrostatic precipitator, J. Electrost., 2012, vol. 70, no. 1, p. 20.

    Article  Google Scholar 

  14. Nouri, H., Aissou, M., and Zebboudj, Y., Modeling and simulation of the effect of pressure on the corona discharge for wire-plan configuration, IEEE Trans. Dielectr. Electr. Insul., 2013, vol. 20, no. 5, p. 1547.

    Article  Google Scholar 

  15. Ait Said, H., Aissou, A., Nouri, H., and Zebboudj, Y., Analysis of the current–voltage characteristic during the corona discharge in wires-to-planes electrostatic precipitator under variable air humidity, Acta Phys. Pol. A, 2019, vol. 135, no. 3, p. 320.

    Article  Google Scholar 

  16. Nouri, H. and Zebboudj, Y., Analysis of positive corona in wire-to-plate electrostatic precipitator, Eur. Phys J. Appl. Phys., 2010, vol. 49, no. 1, p. 11001.

    Article  Google Scholar 

  17. Tong, Y., Lin, L., Zhang, L., Bu, S., et al., Separation of fine particulates using a honeycomb tube electrostatic precipitator equipped with arista electrodes, Sep. Purif. Technol., 2020, vol. 236, no. 4, p. 116299.

    Article  Google Scholar 

  18. Mizuno, A., Electrostatic precipitation, IEEE Trans. Dielectr. Electr. Insul., 2000, vol. 7, no. 5, p. 615.

    Article  Google Scholar 

  19. Darcovich, K., Jonasson, K.A., and Capes, C.E., Developments in the control of fine particulate air emissions, Adv. Powder Technol., 1997, vol. 8, no. 3, p. 179.

    Article  Google Scholar 

  20. Fasoli, M., Vedda, A., Mihokova, E., and Nikl, M., Optical methods for the evaluation of the thermal ionization barrier of lanthanide excited states in luminescent materials, Phys. Rev. B, 2012, vol. 85, no. 8, p. 85.

    Article  Google Scholar 

  21. Shale, C.C., Progress in high-temperature electrostatic precipitation, J. Air Pol. Contr. Assoc., 1967, vol. 17, no. 3, p. 159.

    Article  Google Scholar 

  22. Shale, C.C. and Holden, J., The role of wire size in negative electrical discharge at high temperature. Industry and general applications, IEEE Trans. Ind. Gen. Appl., 1969, vol. 5, no. 1, p. 34.

    Article  Google Scholar 

  23. Cooperman, P., Spontaneous ionization of gases at high temperature, IEEE Trans. Ind. Appl., 1974, vol. 10, no. 6, p. 520.

    Article  Google Scholar 

  24. Yala, H. and Zebboudj, Y., Finite-element solution of monopolar corona in a coaxial system, Eur. Phys. J. Appl. Phys., 2002, vol. 19, no. 2, p. 123.

    Article  Google Scholar 

  25. Conesa, A.J. and Sánchez, M., The current–voltage characteristics of corona discharge in wire to cylinder in parallel electrode arrangement, IEEE Trans. Plasma Sci., 2018, vol. 46, no. 8, p. 3022.

    Article  Google Scholar 

  26. Weisberg, S., Applied Linear Regression, Hoboken, NJ: Wiley, 2014.

    MATH  Google Scholar 

  27. Cohen, J., Statistical Power Analysis for the Behavioral Sciences, New York: Lawrence Erlbaum Associates, 1988.

    MATH  Google Scholar 

  28. Tenenhaus, M., Statistique. Méthodes pour décrire, expliquer et prévoir, Paris: Dunod, 2007.

    Google Scholar 

  29. Dodge, Y. and Rousson, V., Analyse de régression appliquée, Paris: Dunod, 2004.

    MATH  Google Scholar 

  30. Johnston, J. and Dinardo, J., Méthodes econométriques, Paris: Economica, 1999.

    Google Scholar 

  31. Peek, F.M., Dielectric Phenomena in High Voltage Engineering, New York: McGraw-Hill, 1929, 3rd ed.

    Google Scholar 

  32. Guo, B.Y., Guo, J., and Yu, A.B., Simulation of the electric field in wire-plate type electrostatic precipitators, J. Electrost., 2014, vol. 72, no. 4, p. 301.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the help and encouragement they have received from colleagues and collaborators during the course of writing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ait Said.

Ethics declarations

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Said, H., Aissou, M., Laifaoui, A. et al. Experimental Analysis of Corona Current Density Distribution and Electric Field at Variable Temperatures in Electrostatic Precipitator. Surf. Engin. Appl.Electrochem. 58, 339–349 (2022). https://doi.org/10.3103/S1068375522040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375522040032

Keywords:

Navigation