Skip to main content
Log in

Effect of Electrolysis Conditions on the Composition and Microhardness of Ternary Cobalt Alloy Coatings

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The deposition of Co–W(Mo)–Zr ternary alloys on a copper substrate from pyrophosphate–citrate electrolytes in a pulsed mode has been studied. The effect of temperature, electrolyte pH, and current density on the composition, surface morphology, and current efficiency of ternary electrolytic cobalt alloys with refractory metals has been studied. The resulting coatings have a crack-free uniformly developed surface, which provides a fairly high and reproducible microhardness. It has been found that the size of the globules on the alloy surface decreases with an increase in the current density to 10 A/dm2. It has been revealed that an increase in temperature favorably affects the current efficiency and microhardness of Co–W–Zr coatings. The modes of electrosynthesis of cobalt–tungsten(molybdenum)–zirconium alloy coatings with a desired level of surface development and microhardness have been substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sun, S., Bairachna, T., and Podlaha, E.J., Induced codeposition behavior of electrodeposited NiMoW alloys, J. Electrochem. Soc., 2013, vol. 160, no. 10, p. 434.

    Article  Google Scholar 

  2. Murase, K., Ogawa, M., Hirato, T., and Awakura, Y., Design of acidic Ni–Mo alloy plating baths using a set of apparent equilibrium constants, J. Electrochem. Soc., 2004, vol. 151, no. 112, p. 798.

    Article  Google Scholar 

  3. Grabco, D.Z., Dikusar, A.I., Petrenko, V.I., Harea, E.E., et al., Micromechanical properties of Co–W alloys electrodeposited under pulse conditions, Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 1, p. 11.

    Article  Google Scholar 

  4. Ibrahim, M., Abd El Rehim, S., and Moussa, S., Electrodeposition of noncrystalline cobalt–tungsten alloys from citrate electrolytes, J. Appl. Electrochem., 2003, vol. 33, p. 627.

    Article  Google Scholar 

  5. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., et al., Modern trends in tungsten alloys electrodeposition with iron group metals, Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, p. 491.

    Article  Google Scholar 

  6. Ved, M., Glushkova, M., and Sakhnenko, N., Catalytic properties of binary and ternary alloys based on silver, Funct. Mater., 2013, vol. 20, no. 1, p. 87.

    Article  Google Scholar 

  7. Shul’man, A.I., Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Role of complexation in forming composition of Co–W coatings electrodeposited from gluconate electrolyte, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 1, p. 9.

    Article  Google Scholar 

  8. Yapontseva, Y.S., Dikusar, A.I., and Kyblanovskii, V.S., Study of the composition, corrosion, and catalytic properties of Co–W alloys electrodeposited from a citrate pyrophosphate electrolyte, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 4, p. 330.

    Article  Google Scholar 

  9. Zeng, J. and Lee, J.Y., Effects of preparation conditions on performance of carbon-supported nanosize Pt–Co catalysts for methanol electro-oxidation under acidic conditions, J. Power Sources, 2005, vol. 140, no. 2, p. 268.

    Article  Google Scholar 

  10. Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 2006, vol. 201, p. 371.

    Article  Google Scholar 

  11. Vasil’eva, E.A., Smenova, I.V., Protsenko, V.S., Konstantinova, T.E., et al., Electrodeposition of hard iron-zirconia dioxide composite coatings from a methanesulfonate electrolyte, Russ. J. Appl. Chem., 2013, vol. 86, no. 11, p. 1735.

    Article  Google Scholar 

  12. Kuznetsov, V.V., Kalinkina, A.A., Pshenichkina, T.V., and Balabaev, V.V., Electrocatalytic properties of cobalt-molybdenum alloy deposits in the hydrogen evolution reaction, Russ. J. Electrochem., 2008, vol. 44, no. 12, p. 11. https://doi.org/10.1134/S1023193508120070

    Article  Google Scholar 

  13. Ved, M., Sakhnenko, N., Bairachnaya, T., and Tkachenko, N., Structure and properties of electrolytic cobalt-tungsten alloy coatings, Funct. Mater., 2008, vol. 15, no. 4, p. 613.

    Google Scholar 

  14. Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Size effect of microhardness of nanocrystalline Co–W coatings produced from citrate and gluconate solutions, Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, pp. 228–234. https://doi.org/10.3103/S106837551503014X

    Article  Google Scholar 

  15. Yang, F.Z., Ma, Z.H., Huang, L., et al., Electrodeposition and properties of amorphous Ni–W–B alloy before and after heat treatment, Chin. J. Chem., 2006, vol. 24, no. 9, p. 114.

    Article  Google Scholar 

  16. Gamburg, Yu.D., Zakharov, E.N., and Goryunov, G.E., Electrodeposition, structure, and properties of iron–tungsten alloys, Russ. J. Electrochem., 2001, vol. 37, p. 670.

    Article  Google Scholar 

  17. Podlaha, E.J. and Landolt, D., Induced codeposition. 1. An experimental investigation of Ni–Mo alloys, J. Electrochem. Soc., 1996, vol. 143, pp. 884–893.

    Google Scholar 

  18. Krasikov, V.L. and Krasikov, A.V., Mechanism for induced codeposition of alloys and some single refractory metals, Izv. S.-Peterb. Gos. Tekhnol. Inst., 2016, vol. 37 (63). https://doi.org/10.15217/issn1998984-9.2016.37.8

  19. Eliaz, N. and Gileadi, E., Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals, in Modern Aspects of Electrochemistry, New York: Springer-Verlag, 2008, vol. 42, p. 191.

    Google Scholar 

  20. Krasikov, V.L. and Krasikov, A.V., Mechanism of nickel–tungsten alloy electrodeposition from pyrophosphate electrolyte, Izv. S.-Peterb. Gos. Tekhnol. Inst., 2016, vol. 36 (66). https://doi.org/10.15217/issn1998984-9.2016.36.12

  21. Yar-Mukhamedova, G., Ved’, M., Sakhnenko, N., and Nenastina, T., Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten, Appl. Surf. Sci., 2018, vol. 445, p. 298.

    Article  Google Scholar 

  22. Ved’, M.V., Sakhnenko, M.D., Bohoyavlens’ka, O.V., and Nenastina, T.O., Corrosion and electrochemical properties of binary cobalt and nickel alloys, Mater. Sci., 2008, vol. 44, no. 1, p. 79. https://doi.org/10.1007/s11003-008-9046-6

    Article  Google Scholar 

  23. Karakurkchi, A.V., Ved’, M.V., Yermolenko, I.Yu., and Sakhnenko, N.D., Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 1, p. 43. https://doi.org/10.3103/s1068375516010087

    Article  Google Scholar 

  24. Belevskii, S.S., Danilchuk, V.V., Gotelyak, A.V., Lelis, M., et al., Electrodeposition of Fe–W alloys from citrate bath: impact of anode material, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 1, pp. 1–12. https://doi.org/10.3103/S1068375520010020

    Article  Google Scholar 

  25. Danil’chuk, V.V., Silkin, S.A., Gotelyak, A.V., Buravets, V.A., et al., The mechanical properties and rate of electrodeposition of Co–W alloys from a boron–gluconate bath: impact of anodic processes, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 930.

    Article  Google Scholar 

  26. Ved, M.V., Sakhnenko, N.D., Yermolenko, I.Y., and Nenastina, T.A., Nanostructured functional coatings of iron family metals with refractory elements, Proc. 5th Int. Conf. on Nanotechnology and Nanomaterials (NANO2017), August 23–26, 2017, Chernivtsi, Ukraine, New York: Springer-Verlag, 2018, vol. 214, p. 3. https://doi.org/10.1007/978-3-319-92567-7

  27. Ved’, M.V., Sakhnenko, M.D., Karakurkchi, H.V., Ermolenko, I.Yu., et al., Functional properties of Fe–Mo and Fe–Mo–W galvanic alloys, Mater. Sci., 2016, vol. 51, no. 5, p. 701. https://doi.org/10.1007/s11003-016-9893-5

    Article  Google Scholar 

  28. Donten, M., Cromulski, T., and Stojek, Z.A., Fe or Co–Fe alloy/manganese ferrite composites, J. Alloy Compd., 1998, vol. 279, p. 272.

    Article  Google Scholar 

  29. Sachanova, Y.I., Ermolenko, I.Y., Ved’, M.V., Sakhnenko, M.D., et al., Influence of the contents of refractory components on the corrosion resistance of ternary alloys based on iron and cobalt, Mater. Sci., 2019, vol. 54, no. 4, p. 556. https://doi.org/10.1007/s11003-019-00218-x

    Article  Google Scholar 

  30. Cesiulis, H. and Budreikaz, A., Electroreduction of Ni(II) and Co(II) from pyrophosphate solutions, Mater. Sci., 2010, vol. 16, no. 11, p. 52.

    Google Scholar 

  31. Sakhnenko, N.D., Ved, M.V., Hapon, Y.K., and Nenastina, T.A., Functional coatings of ternary alloys of cobalt with refractory metals, Russ. J. Appl. Chem., 2015, vol. 88, no. 12, p. 1941.

    Article  Google Scholar 

  32. Yar-Mukhamedova, G., Ved’, M., Sakhnenko, N., and Nenastina, T., Composition electrolytic coatings with given functional properties, in Applied Surface Science, London: InTechOpen, 2019, pp. 93–109. https://doi.org/10.5772/intechopen.84519

  33. Silkin, S.A., Tinkov, O.V., Petrenko, V.I., Tsyntsaru, N.I., et al., Electrodeposition of the Co-W alloys: role of the temperature, Surf. Eng. Appl. Electrochem., 2006, no. 4, p. 11.

  34. Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Electrodeposition of alloys of the iron group metals with tungsten from citrate and gluconate solutions: size effect of microhardness, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, p. 7.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of Ukraine within the framework of the project Design of Nanostructured Functional Materials Based on Composites and Multicomponent Electrolytic Alloys of the Iron Triad Metals for Environmental and Power Technologies (DR 0118U002051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Nenastina.

Additional information

Translated by M. Timoshinina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nenastina, T.A., Ved’, M.V., Sakhnenko, N.D. et al. Effect of Electrolysis Conditions on the Composition and Microhardness of Ternary Cobalt Alloy Coatings. Surf. Engin. Appl.Electrochem. 57, 59–66 (2021). https://doi.org/10.3103/S1068375521010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521010099

Keywords:

Navigation