Abstract
The deposition of Co–W(Mo)–Zr ternary alloys on a copper substrate from pyrophosphate–citrate electrolytes in a pulsed mode has been studied. The effect of temperature, electrolyte pH, and current density on the composition, surface morphology, and current efficiency of ternary electrolytic cobalt alloys with refractory metals has been studied. The resulting coatings have a crack-free uniformly developed surface, which provides a fairly high and reproducible microhardness. It has been found that the size of the globules on the alloy surface decreases with an increase in the current density to 10 A/dm2. It has been revealed that an increase in temperature favorably affects the current efficiency and microhardness of Co–W–Zr coatings. The modes of electrosynthesis of cobalt–tungsten(molybdenum)–zirconium alloy coatings with a desired level of surface development and microhardness have been substantiated.
Similar content being viewed by others
REFERENCES
Sun, S., Bairachna, T., and Podlaha, E.J., Induced codeposition behavior of electrodeposited NiMoW alloys, J. Electrochem. Soc., 2013, vol. 160, no. 10, p. 434.
Murase, K., Ogawa, M., Hirato, T., and Awakura, Y., Design of acidic Ni–Mo alloy plating baths using a set of apparent equilibrium constants, J. Electrochem. Soc., 2004, vol. 151, no. 112, p. 798.
Grabco, D.Z., Dikusar, A.I., Petrenko, V.I., Harea, E.E., et al., Micromechanical properties of Co–W alloys electrodeposited under pulse conditions, Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 1, p. 11.
Ibrahim, M., Abd El Rehim, S., and Moussa, S., Electrodeposition of noncrystalline cobalt–tungsten alloys from citrate electrolytes, J. Appl. Electrochem., 2003, vol. 33, p. 627.
Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., et al., Modern trends in tungsten alloys electrodeposition with iron group metals, Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, p. 491.
Ved, M., Glushkova, M., and Sakhnenko, N., Catalytic properties of binary and ternary alloys based on silver, Funct. Mater., 2013, vol. 20, no. 1, p. 87.
Shul’man, A.I., Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Role of complexation in forming composition of Co–W coatings electrodeposited from gluconate electrolyte, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 1, p. 9.
Yapontseva, Y.S., Dikusar, A.I., and Kyblanovskii, V.S., Study of the composition, corrosion, and catalytic properties of Co–W alloys electrodeposited from a citrate pyrophosphate electrolyte, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 4, p. 330.
Zeng, J. and Lee, J.Y., Effects of preparation conditions on performance of carbon-supported nanosize Pt–Co catalysts for methanol electro-oxidation under acidic conditions, J. Power Sources, 2005, vol. 140, no. 2, p. 268.
Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 2006, vol. 201, p. 371.
Vasil’eva, E.A., Smenova, I.V., Protsenko, V.S., Konstantinova, T.E., et al., Electrodeposition of hard iron-zirconia dioxide composite coatings from a methanesulfonate electrolyte, Russ. J. Appl. Chem., 2013, vol. 86, no. 11, p. 1735.
Kuznetsov, V.V., Kalinkina, A.A., Pshenichkina, T.V., and Balabaev, V.V., Electrocatalytic properties of cobalt-molybdenum alloy deposits in the hydrogen evolution reaction, Russ. J. Electrochem., 2008, vol. 44, no. 12, p. 11. https://doi.org/10.1134/S1023193508120070
Ved, M., Sakhnenko, N., Bairachnaya, T., and Tkachenko, N., Structure and properties of electrolytic cobalt-tungsten alloy coatings, Funct. Mater., 2008, vol. 15, no. 4, p. 613.
Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Size effect of microhardness of nanocrystalline Co–W coatings produced from citrate and gluconate solutions, Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, pp. 228–234. https://doi.org/10.3103/S106837551503014X
Yang, F.Z., Ma, Z.H., Huang, L., et al., Electrodeposition and properties of amorphous Ni–W–B alloy before and after heat treatment, Chin. J. Chem., 2006, vol. 24, no. 9, p. 114.
Gamburg, Yu.D., Zakharov, E.N., and Goryunov, G.E., Electrodeposition, structure, and properties of iron–tungsten alloys, Russ. J. Electrochem., 2001, vol. 37, p. 670.
Podlaha, E.J. and Landolt, D., Induced codeposition. 1. An experimental investigation of Ni–Mo alloys, J. Electrochem. Soc., 1996, vol. 143, pp. 884–893.
Krasikov, V.L. and Krasikov, A.V., Mechanism for induced codeposition of alloys and some single refractory metals, Izv. S.-Peterb. Gos. Tekhnol. Inst., 2016, vol. 37 (63). https://doi.org/10.15217/issn1998984-9.2016.37.8
Eliaz, N. and Gileadi, E., Induced codeposition of alloys of tungsten, molybdenum and rhenium with transition metals, in Modern Aspects of Electrochemistry, New York: Springer-Verlag, 2008, vol. 42, p. 191.
Krasikov, V.L. and Krasikov, A.V., Mechanism of nickel–tungsten alloy electrodeposition from pyrophosphate electrolyte, Izv. S.-Peterb. Gos. Tekhnol. Inst., 2016, vol. 36 (66). https://doi.org/10.15217/issn1998984-9.2016.36.12
Yar-Mukhamedova, G., Ved’, M., Sakhnenko, N., and Nenastina, T., Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten, Appl. Surf. Sci., 2018, vol. 445, p. 298.
Ved’, M.V., Sakhnenko, M.D., Bohoyavlens’ka, O.V., and Nenastina, T.O., Corrosion and electrochemical properties of binary cobalt and nickel alloys, Mater. Sci., 2008, vol. 44, no. 1, p. 79. https://doi.org/10.1007/s11003-008-9046-6
Karakurkchi, A.V., Ved’, M.V., Yermolenko, I.Yu., and Sakhnenko, N.D., Electrochemical deposition of Fe–Mo–W alloy coatings from citrate electrolyte, Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 1, p. 43. https://doi.org/10.3103/s1068375516010087
Belevskii, S.S., Danilchuk, V.V., Gotelyak, A.V., Lelis, M., et al., Electrodeposition of Fe–W alloys from citrate bath: impact of anode material, Surf. Eng. Appl. Electrochem., 2020, vol. 56, no. 1, pp. 1–12. https://doi.org/10.3103/S1068375520010020
Danil’chuk, V.V., Silkin, S.A., Gotelyak, A.V., Buravets, V.A., et al., The mechanical properties and rate of electrodeposition of Co–W alloys from a boron–gluconate bath: impact of anodic processes, Russ. J. Electrochem., 2018, vol. 54, no. 11, p. 930.
Ved, M.V., Sakhnenko, N.D., Yermolenko, I.Y., and Nenastina, T.A., Nanostructured functional coatings of iron family metals with refractory elements, Proc. 5th Int. Conf. on Nanotechnology and Nanomaterials (NANO2017), August 23–26, 2017, Chernivtsi, Ukraine, New York: Springer-Verlag, 2018, vol. 214, p. 3. https://doi.org/10.1007/978-3-319-92567-7
Ved’, M.V., Sakhnenko, M.D., Karakurkchi, H.V., Ermolenko, I.Yu., et al., Functional properties of Fe–Mo and Fe–Mo–W galvanic alloys, Mater. Sci., 2016, vol. 51, no. 5, p. 701. https://doi.org/10.1007/s11003-016-9893-5
Donten, M., Cromulski, T., and Stojek, Z.A., Fe or Co–Fe alloy/manganese ferrite composites, J. Alloy Compd., 1998, vol. 279, p. 272.
Sachanova, Y.I., Ermolenko, I.Y., Ved’, M.V., Sakhnenko, M.D., et al., Influence of the contents of refractory components on the corrosion resistance of ternary alloys based on iron and cobalt, Mater. Sci., 2019, vol. 54, no. 4, p. 556. https://doi.org/10.1007/s11003-019-00218-x
Cesiulis, H. and Budreikaz, A., Electroreduction of Ni(II) and Co(II) from pyrophosphate solutions, Mater. Sci., 2010, vol. 16, no. 11, p. 52.
Sakhnenko, N.D., Ved, M.V., Hapon, Y.K., and Nenastina, T.A., Functional coatings of ternary alloys of cobalt with refractory metals, Russ. J. Appl. Chem., 2015, vol. 88, no. 12, p. 1941.
Yar-Mukhamedova, G., Ved’, M., Sakhnenko, N., and Nenastina, T., Composition electrolytic coatings with given functional properties, in Applied Surface Science, London: InTechOpen, 2019, pp. 93–109. https://doi.org/10.5772/intechopen.84519
Silkin, S.A., Tinkov, O.V., Petrenko, V.I., Tsyntsaru, N.I., et al., Electrodeposition of the Co-W alloys: role of the temperature, Surf. Eng. Appl. Electrochem., 2006, no. 4, p. 11.
Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Electrodeposition of alloys of the iron group metals with tungsten from citrate and gluconate solutions: size effect of microhardness, Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, p. 7.
Funding
This work was supported by the Ministry of Education and Science of Ukraine within the framework of the project Design of Nanostructured Functional Materials Based on Composites and Multicomponent Electrolytic Alloys of the Iron Triad Metals for Environmental and Power Technologies (DR 0118U002051).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by M. Timoshinina
About this article
Cite this article
Nenastina, T.A., Ved’, M.V., Sakhnenko, N.D. et al. Effect of Electrolysis Conditions on the Composition and Microhardness of Ternary Cobalt Alloy Coatings. Surf. Engin. Appl.Electrochem. 57, 59–66 (2021). https://doi.org/10.3103/S1068375521010099
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1068375521010099