Skip to main content
Log in

Anisotropy of Magnetic Fluid Conductivity in Constant Magnetic Fields

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrical conduction of a magnetic fluid (MF) on kerosene, stabilized by oleic acid, is investigated in an external magnetic field. The analysis of the current-voltage characteristics with electric and magnetic fields crossed at different angles showed a change in the conductivity of the magnetic fluid. In the case of the same orientation of the fields, the conductivity is maximal, while it is minimal for the orthogonal field orientation. The study of changes in the surface structure of the electrodes showed that the contact surface processes make a significant contribution to the conductivity anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Shliomis, M.I., Phys.—Usp., 1974, vol. 17, no. 2, pp. 153–169.

    Google Scholar 

  2. Taketomi, S. and Tikazumi, S., Magnetic Fluid, Tokyo: Nikkan Kogyo Shinbunsha, 1988; Moscow: Mir, 1993.

    Google Scholar 

  3. Skanavi, G.I., Fizika dielektrikov (oblast’ slabykh polei) (Physics of Dielectrics: Weak Fields), Moscow: Fizmatgiz, 1949.

  4. Skanavi, G.I., Fizika dielektrikov (oblast’ slabykh polei) (Physics of Dielectrics: Weak Fields), Moscow: Fizmatgiz, 1958.

  5. Adamczewski, I., Jonizacja i Przewodnictwo Ciekłych Dielektryków, Warsaw: Państwowe Wyd. Nauk., 1965.

    Google Scholar 

  6. Semenchenko, V., Fizicheskaya khimiya rastvorov (Physical Chemistry of Solutions), Moscow: Gostekhizdat, 1941.

  7. Onsager, L.J., Chem. Phys., 1934, vol. 2, pp. 599–615.

    Google Scholar 

  8. Kireev, V.A., Kurs fizicheskoi khimii (Course of Physical Chemistry), Moscow: Khimiya, 1975.

  9. Izmailov, N.A., Elektrokhimiya rastvorov (Electrochemistry of Solutions), Moscow: Khimiya, 1976.

  10. Zhakin, A.I., Vestn. Khar’k. Gos. Univ., Matem., Mekh. Vopr. Upr., 1983, no. 241, pp. 3–23.

  11. Electrohydrodynamics, CISM Courses and Lectures, no. 380, Undine, 1998.

  12. Zhakin A.I., Electrohydrodynamics: Basic Concepts, Problems and Applications, Kursk: Kursk Univ. Press, 1998.

    Google Scholar 

  13. Zhakin, A.I., Phys.—Usp., 2013, vol. 46, no. 1, pp. 45–61.

    Article  Google Scholar 

  14. Zhakin, A.I., Phys.—Usp., 2006, vol. 49, no. 3, pp. 275–295.

    Article  Google Scholar 

  15. Zhakin, A.I., Phys.—Usp., 2012, vol. 55, no. 5, pp. 465–488.

    Article  Google Scholar 

  16. Zhakin, A.I., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 4, pp. 354–366.

    Article  Google Scholar 

  17. Zhakin, A.I., Magnetohydrodynamics, 1982, vol. 18, no. 2, p. 160.

    Google Scholar 

  18. Fedonenko, A.I. and Zhakin, A.I., Magnetohydrodynamics, 1982, vol. 18, no. 3, p. 272.

    Google Scholar 

  19. Bologa, M.K., Grosu, F.P., and Kozhukhar’, I.A., Elektrokonventsiya i teploobmen (Electroconvection and Heat Transfer), Chisinau: Shtiintsa, 1977.

  20. Stishkov, Yu.K. and Ostapenko, A.A., Elektrodinamicheskie techeniya v zhidkikh dielektrikakh (Electrohydrodynamic Flows in Liquid Dielectrics), Leningrad: Leningr. Gos. Univ., 1989.

  21. Stishkov, Yu.K. and Chirkov, V.A., Zh. Tekh. Fiz., 2005, vol. 75, no. 5, pp. 46–51.

    Google Scholar 

  22. Zhakin, A.I. and Kuzko, A.E., Fluid Dyn., 2013, vol. 48, no. 3, pp. 310–320.

    Article  MathSciNet  Google Scholar 

  23. Erin, K.V., Colloid J., 2008, vol. 70, no. 4, pp. 430–435.

    Article  Google Scholar 

  24. Erin, K.V., Colloid J., 2010|, vol. 72, no. 4, pp. 486–490.

    Article  Google Scholar 

  25. Erin, K.V., Elektron. Obrab. Mater., 2015, vol. 51, no. 1, pp. 99–104.

    Google Scholar 

  26. Chekanov, V.V. and Bondarenko, E.A., Vestn. Stavrop. Gos. Univ., 2003, no. 34, pp. 31–34.

  27. Chekanov, V.V., Kandaurova, N.V., and Chekanov, V.S., J. Magn. Magn. Mater., 2017, vol. 431, pp. 38–41.

    Article  Google Scholar 

  28. Chekanov, V.V., Kandaurova, N.V., and Chekanov, V.S., J. Mol. Liq., 2018, vol. 272, pp. 828–833.

    Article  Google Scholar 

  29. Fertman, V.E., Gordeev, G.M., Matusevich, N.P., and Rzhevskaya, S.P., Fizicheskie svoistva magnitnykh zhidkostei (Physical Properties of Magnetic Fluids), Sverdlovsk: Ural. Nauchn. Tsentr, Akad. Nauk SSSR, 1983, pp. 98–693.

  30. Dikanskii, Yu.I., Vegera, Zh.G., Smeryuk, Yu.L., and Aksenov, A.V., Nanotekhnika, 2009, no. 18, pp. 20–24.

  31. Zhakin, A.I. and Kuz’ko, A.E., in Materialy X Mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy elektrofiziki i elektrogidrodinamiki zhidkostei,” 25–28 iyunya 2012 g. (Proc. X Int. Sci. Conf. “Modern Problems in Electrophysics and Electrohydrodynamcis,” June 25–28, 2012), St. Petersburg: Solo, 2012, pp. 59–61.

Download references

Funding

The work was performed in the context of state assignment no. 3.5385.2017/8.9 under the Experimental Investigation and Mathematical Simulation of Interphase and Near-Surface Phenomena in the Thin Film of the Nanostructured Magnetic Fluid project (Russian Technological University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Kuz’ko or V. S. Chekanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Myshkina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’ko, A.E., Chekanov, V.S. Anisotropy of Magnetic Fluid Conductivity in Constant Magnetic Fields. Surf. Engin. Appl.Electrochem. 56, 727–733 (2020). https://doi.org/10.3103/S1068375520060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520060095

Keywords:

Navigation