Nano- and Micromechanical Parameters of AISI 316L Steel

Abstract

The nano- and micro-indentation mechanical parameters of the AISI 316L stainless steel, such as nanohardness (НNI), microhardness (HMI), the Young modulus (E), the indices of plasticity (H/E) and resistance (H3/E2), and relaxation parameters hs, hres, he-p and their dependences on the value of P load applied to an indenter were studied. Hardness is shown to be slightly decreased in the microindentation interval (Р = 100–500 mN) with an increase in the load, whereas it grows substantially with P decrease in the region of nanoindentation (Р < 100 mN) to exhibit the Indentation Size Effect. The major peculiarities of the deformation process were established resulting from the study of the indenter penetration character. The presence of various mechanisms of the plastic deformation is supported during the indentation of AISI 316L steel (intragranular, intergranular, and rotational), and a physical interpretation of the observed patterns is offered. The results obtained are of great importance for practice, since the compound AISI 316L belongs to medical steels being used as implants in stomatology, bone impregnation, and biotechnology.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. 1

    Grigorovich, V.K., Tverdost’ i mikrotverdost’ metallov (Hardness and Microhardness of Metals), Moscow: Nauka, 1976.

  2. 2

    Golovin, Yu.I., Zavod. Lab., Diagn. Mater., 2009, vol. 75, no. 1, pp. 45–59.

    Google Scholar 

  3. 3

    Dub, S.N. and Novikov, N.V., Sverkhtverd. Mater., 2004, no. 6, pp. 16–33.

  4. 4

    Tam, E., Petrzhik, M., Shtansky, D., and Delplancke-Ogletree, M.-P., J. Mater. Sci. Technol., 2009, vol. 25, no. 1, pp. 63–68.

    Google Scholar 

  5. 5

    Moshchenok, V.I., Novye metody opredeleniya tverdykh materialov (New Methods of Analysis of Hardness of Materials), Kharkov: Khar’k. Nats. Avtom.-Dorozhn. Univ., 2012.

  6. 6

    Boyarskaya, Yu.S., Grabko, D.Z., and Kats, M.S., Fizika protsessov mikroindentirovaniya (Physics of Microindentation Processes), Chisinau: Shtiintsa, 1986.

  7. 7

    Golovin, Yu.I., Vvedenie v nanotekhniku (Introduction into Nanotehcnics), Moscow: Mashinostroenie, 2007.

  8. 8

    Schun, C.A., Mater. Today, 2006, vol. 9, no. 5, pp. 32–40.

    Google Scholar 

  9. 9

    Bhushan, B. and Li, X., Int. Mater. Rev., 2003, vol. 48, no. 3, pp. 125–164.

    Article  Google Scholar 

  10. 10

    VanLandingham, M.R., J. Res. Natl. Inst. Stand Technol., 2003, vol. 108, no. 4, pp. 249–265.

    Article  Google Scholar 

  11. 11

    Fedorova, D.K., Ivolga, D.V., Alekseev, V.P., and Balyakin, A.V., Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2016, vol. 18, no. 4, pp. 1186–1190.

    Google Scholar 

  12. 12

    Kožuh, S., Gojić, M., and Kosec, L., Kovove Mater., 2009, vol. 47, pp. 253–262.

    Google Scholar 

  13. 13

    Triwiyanto, A., Hussain, P., and Che, I.M., IOP Conf. Ser.: Mater. Sci. Eng., 2013, vol. 46, 012043. https://doi.org/10.1088/1757-899X/46/1/012043

  14. 14

    Chaudhri, M.M., in Dislocation in Solids, Nabarro, F.R.N. and Hirth, J.P., Eds., Amsterdam: Elsevier, 2004, vol. 12, chap. 70, pp. 449–550.

  15. 15

    Grabko, D.Z., Boyarskaya, Yu.S., and Dyntu, M.P., Mekhanicheskie svoistva polumetallov tipa vismuta (Mechanical Properties of Semimetals of Bismuth Type), Chisinau: Shtiintsa, 1982.

  16. 16

    Grabco, D.Z., Pyrtsac, K.M., and Shikimaka, O.A., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 3, pp. 233–241. https://doi.org/10.3103/S1068375516030066

    Article  Google Scholar 

  17. 17

    Grabco, D.Z., Nicorici, V.Z., Barbos, Z.A., Topal, D., et al., Proc. 4th Int. Conf. on Nanotechnologies and Biomedical Engineering (ICNBME-2019), September 18–21, 2019, Chisinau, Moldova, New York: Springer, 2019, pp. 149–153. https://doi.org/10.1007/978-3-030-31866-6

  18. 18

    Güder, H.S., Şahina, E., Şahin, O., Göçmez, H., et al., Acta Phys. Pol., 2011, vol. 120, no. 6, pp. 1026–1033.

    Article  Google Scholar 

  19. 19

    Kavetskyy, T., Borc, J., Sangwal, K., and Tsmots, V., J. Optoelectron. Adv. Mater., 2010, vol. 12, no. 10, pp. 2082–2091.

    Google Scholar 

  20. 20

    Grabco, D. and Leu, D., Mater. Sci. Eng., A, 2010, vol. 527, pp. 6987–6996. https://doi.org/10.1016/msea.2010.07.034

    Article  Google Scholar 

  21. 21

    Springer Handbook of Nanotechnology, Bhushan, B., Ed., Berlin: Springer, 2007.

    Google Scholar 

  22. 22

    Oliver, W.C. and Pharr, G.M., J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  Google Scholar 

  23. 23

    Pharr, G.M., Herbert, E.G. and Gao, Y., Annu. Rev. Mater. Res., 2010, vol. 40, pp. 271–292.

    Article  Google Scholar 

  24. 24

    Quinn, J.B. and Quinn, G.D., J. Mater. Sci., 1997, vol. 32, pp. 4331–4346.

    Article  Google Scholar 

  25. 25

    Sahin, O., Uzun, O., Kolemen, U., and Ucar, N., Mater. Charact., 2008, vol. 59, pp. 427–434.

    Article  Google Scholar 

  26. 26

    Durst, K., Backes, B., Franke, O., and Göken, M., Acta Mater., 2006, vol. 54, pp. 2547–2555.

    Article  Google Scholar 

  27. 27

    Kaibyshev, O.A. and Valiev, R.Z., Granitsy zeren i svoistva metallov (Grain Boundaries and Properties of Metals), Moscow: Metallurgiya, 1987.

  28. 28

    Gutkin, M.Yu., Ovid’ko, I.A., and Skiba, N.V., Acta Mater., 2003, vol. 51, pp. 4059–4071.

    Article  Google Scholar 

  29. 29

    Gutkin, M.Yu., Ovid’ko, I.A., and Skiba, N.V., Phys. Solid State, 2005, vol. 47, no. 9, pp. 1662–1674.

    Article  Google Scholar 

  30. 30

    Kharin, E.G., Poletaev, G.M., Rakitin, R.Yu., Martynov, A.N., et al., Izv. Altai. Gos. Univ., Fiz., 2010, nos. 1–2, pp. 192–195.

  31. 31

    Leyland, A. and Matthews, A., Wear, 2000, vol. 246, nos. 1–2, pp. 1–11.

    Article  Google Scholar 

  32. 32

    Lind, L., Peetsalu, P., and Sergejev, F., Medziagotyra, 2015, vol. 21, no. 3, pp. 343–348.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Tudor Branishte (National Centre for Material Science and Tests, Technical University of Moldova) for the atomic-force microscope (AFM) measurements.

Funding

This work was performed in the framework of the joint project of the ERA.Net RusPlus (RUS_ST2017-359), supported by grants nos. RFFI-18-51-76001 (Russian Foundation for Basic Research), 359 (Ministry of Education, Science and Technical Development, Serbia) and 18.80013.16.02.01/ERA.Net (Moldova).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to D. Grabco or D. Vilotic or S. Aleksandrov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Baznat

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grabco, D., Shikimaka, O., Pyrtsac, C. et al. Nano- and Micromechanical Parameters of AISI 316L Steel. Surf. Engin. Appl.Electrochem. 56, 719–726 (2020). https://doi.org/10.3103/S1068375520060071

Download citation

Keywords:

  • AISI 316L steel
  • nano- and microindentation
  • hardness
  • Young’s modulus
  • plasticity and resistance indices
  • relaxation parameters
  • plastic deformation mechanisms