Integral Role of the NiS Electrode/Electrolyte Interface in the Redox Reaction with Lithium


Electrochemically synthesized thin-layer NiS electrodes were studied in lithium perchlorate dissolved in 1.3-dioxolane or in a mixture of 1.3-dioxolane and tetrahydrofuran. In the 1.3-dioxolane 1 M LiClO4 electrolyte, the irreversible capacity was reduced by 20% сompared to the initial capacity. However, the stability of the electrochemical characteristics of NiS electrodes in redox reactions with lithium is unsatisfactory. Much better results of charge–discharge cycling of NiS electrodes were obtained in the electrolyte solutions of 1.3-dioxolane, tetrahydrofuran, and 1 M LiClO4 demonstrating a stable reversible capacity of 400–450 mAh/g during 50–75 cycles. Using the methods of electron microscopy and IR spectroscopy with Fourier transform, it was established that the reason for the discharge capacity fading of NiS electrodes was associated with the formation of a surface film, which reduces the adhesion and cohesion of NiS particles. This, in turn, leads to a loss in the mechanical strength of NiS electrodes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.


  1. 1

    Armand, M. and Tarascon, J.-M., Nature, 2008, vol. 451, pp. 652–657.

  2. 2

    Jeong, Y.U. and Manthiram, A., Inorg. Chem., 2001, vol. 40, pp. 73–77.

    Article  Google Scholar 

  3. 3

    Jasinski, R. and Burrows, B., J. Electrochem. Soc., 1969, vol. 116, pp. 422–425.

    Article  Google Scholar 

  4. 4

    Han, S.-C., Kim, H.-S., Song, M.-S., Kim, J.-H., et al., J. Alloys Compd., 2003, vol. 351, pp. 273–278.

    Article  Google Scholar 

  5. 5

    Han, S.-C., Kim, H.-S., Song, M.-S., Lee, P.S., et al., J. Alloys Compd., 2003, vol. 351, pp. 290–296.

    Article  Google Scholar 

  6. 6

    Wang, J., Chew, S.Y., Ng, S.H., Wang, G.X., and Liu, H.K., Proc. 11th Int. Meeting on Lithium Batteries (IMLB 2006), Biarritz, France, June 18–23, 2006, Amsterdam: Elsevier, 2007, paper no. 215.

  7. 7

    Poizot, P., Laruelle, S., Grugeon, S., and Tarascon, J.-M., J. Electrochem. Soc., 2002, vol. 149, pp. 1212–1217.

    Article  Google Scholar 

  8. 8

    Han, S.-C., Kim, K.-W., Ahn, H.-J., Ahn, J.-H., et al., J. Alloys Compd., 2003, vol. 361, pp. 247–251.

    Article  Google Scholar 

  9. 9

    Apostolova, R.D. and Shembel’, E.M., Tonkosharovi elektrolitichno-sintezovani sul’fidi i oksidi perekhidnikh metaliv dlya litievikh dzherel strumu (Thin-Layered Electrolytically-Synthesized Transition Metal Sulfides and Oxides for Lithium Power Sources), Dnepr: LIRA, 2019.

  10. 10

    Apostolova, R.D., Nagirnii, V.M., Zaderei, N.D., and Shembel’, O.M., UA Patent 90585, 2010.

  11. 11

    Apostolova, R.D., Shembel, E.M., Markovsky, B., and Aurbach, D., Vopr. Khim. Khim. Tekhnol., 2007, vol. 5, pp. 182–187.

    Google Scholar 

  12. 12

    Nyquist, R.A. and Kagel, R.O. Infrared Spectra of Inorganic Compounds: 3800-45 Cm-1, New York: Academic, 1971.

    Google Scholar 

  13. 13

    Shifler, D.A., Moran, P.J., and Kruger, J., Electrochim. Acta, 1997, vol. 42, pp. 567–577.

    Article  Google Scholar 

Download references


We are grateful to P.M. Litvin for the analyses performed with AFM.


The work was carried out in the context of cooperation between Ukrainian and Israeli research workers under the guidance of professors D. Aurbach and E. Shembel’.

Author information



Corresponding author

Correspondence to R. D. Apostolova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Myshkina

About this article

Verify currency and authenticity via CrossMark

Cite this article

Apostolova, R.D., Shembel’, E.M., Markovsky, B. et al. Integral Role of the NiS Electrode/Electrolyte Interface in the Redox Reaction with Lithium. Surf. Engin. Appl.Electrochem. 56, 665–674 (2020).

Download citation


  • lithium battery
  • NiS electrode
  • electrochemical characteristics
  • dioxolane/LiClO4
  • dioxolane
  • tetrahydrofuran/LiClO4
  • surface film