Effect of SiO2 Nanoparticles Addition on Tribological and Electrochemical Behaviors of Ni–P–MoS2 Multi-Component Coatings after Heat Treatment


The tribological and electrochemical properties of various nanocomposite coatings of Ni–P–MoS2–SiO2 have been investigated. Such coatings were made by the electroless method and then heated at 400°C for 1 h. The amount of SiO2 nanoparticles was a factor which changed Ni–P–MoS2 coatings characteristics. In addition to microstructure evaluations and the phase detection, the microhardness, the friction coefficient, and wear behavior were studied for various coatings. Field emission scanning electron microscopy images demonstrated that SiO2 nanoparticles were distributed uniformly in the Ni–P–MoS2 matrix. The obtained results showed that when the concentration of SiO2 nanoparticles in the deposition bath increased from 5 to 20 g/L, then the microhardness and the wear resistance increased as well. Besides, the friction coefficient reached the lowest value of 0.05. For nanocomposite coatings, the ratio of the friction coefficient to the square hardness was a proper parameter which could predict the wear behavior. Additionally, energy dispersive spectroscopy results showed that the content of SiO2 nanoparticles in such coatings increased from 4.9 to 11.4 wt %. Corrosion tests demonstrated that the best corrosion resistance was observed for the nanocomposite coating when the concentration of SiO2 nanoparticle was 20 g/L.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.


  1. 1

    Sadreddini, S., Salehi, Z., and Rassaie, H., Appl. Surf. Sci., 2010, vol. 324, pp. 393–398.

    Article  Google Scholar 

  2. 2

    Promphet, N., Rattanawaleedirojn, P., and Rodthongkum, N., Surf. Coat. Technol., 2017, vol. 325, pp. 604–610.

    Article  Google Scholar 

  3. 3

    Islam, M., Azhar, M.R., Fredj, N., Burleigh, T.D., et al., Surf. Coat. Technol., 2015, vol. 261, pp. 141–148.

    Article  Google Scholar 

  4. 4

    Sadreddini, S. and Afshar, A., Appl. Surf. Sci., 2014, vol. 303, pp. 125–130.

    Article  Google Scholar 

  5. 5

    Rabizadeh, T. and Allahkaram, S.R., Mater. Des., 2011, vol. 32, pp. 133–138.

    Article  Google Scholar 

  6. 6

    Wang, H.L., Liu, L.Y., Dou, Y., Zhang, W.Z., et al., Appl. Surf. Sci., 2013, vol. 286, pp. 319–327.

    Article  Google Scholar 

  7. 7

    Radu, T., Vlad, M., Potecasu, F., and Istrate, G.G., Dig. J. Nanomater. Biostruct., 2015, vol. 10, no. 3, pp. 1055–1065.

    Google Scholar 

  8. 8

    Feng, H.M., Bin, H.W., Cheng, Z., Fei, W.J., et al., Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2586–2592.

    Article  Google Scholar 

  9. 9

    Li, Z., Wang, J., Lu, J., and Meng, J., Appl. Surf. Sci., 2013, vol. 264, pp. 516–521.

    Article  Google Scholar 

  10. 10

    Hu, X., Jiang, P., Wan, J., Xu, Y., et al., J. Coat. Technol. Res., 2009, vol. 6, no. 2, pp. 275–281.

    Article  Google Scholar 

  11. 11

    He, Y., Wang, S.C., Walsh, F.C., Chiu Y.L., et al., Surf. Coat. Technol., 2016, vol. 307, pp. 926–934.

    Article  Google Scholar 

  12. 12

    Zou, T.Z., Tu, J.P., Zhang, S.C., Chen, L.M., Wang, Q., Zhang, L.L., and He, D.N., Mater. Sci. Eng., A 2006, vol. 426, pp. 162–168.

    Article  Google Scholar 

  13. 13

    Sheu, H.H., Jian, S.Y., Lin, M.H., Hsu, C.I., et al., Int. J. Electrochem. Soc., 2017, vol. 12, pp. 5464–5482.

    Article  Google Scholar 

  14. 14

    Tamilarasa, T.R., Sanjith, U., Siva-Shankar, M., and Rajagopal, G., Wear, 2017, vols. 390–391, pp. 385–391.

    Article  Google Scholar 

  15. 15

    Vaghefi, S.M.M. and Saatchi, A., Met. Finish., 1997, vol. 95, pp. 46–52.

    Article  Google Scholar 

  16. 16

    Mukhopadhyay, A., Duari, S., Barman, T.K., and Sahoo, P., Port. Electrochim. Acta, 2016, vol. 34, no. 1, pp. 63–83.

    Article  Google Scholar 

  17. 17

    Wu, Y., Liu, L., Shen, B., and Hu, W., J. Mater. Sci., 2005, vol. 40, no. 18, pp. 5056–5059.

    Google Scholar 

  18. 18

    Sharma, A. and Singh, A.K., J. Mater. Eng. Perform., 2014, vol. 23, pp. 142–151.

    Article  Google Scholar 

  19. 19

    Makkar, P., Mishra, D.D., Agarwala, R.C., and Agarwala, V., Ceram. Int., 2014, vol. 40, pp. 12013–12021.

    Article  Google Scholar 

  20. 20

    Yan, L., Rong, Y.S., Dan, L.J., Wu, H.Z., et al., Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 483–488.

    Article  Google Scholar 

  21. 21

    Azadi, M., Rouhaghdam, A.S., Ahangarani, S., and Mofidi, H.H., Surf. Coat. Technol., 2014, vol. 245, pp. 156–166.

    Article  Google Scholar 

  22. 22

    Wawarea, U.S., Hamouda, A.M.S., and Wasekar, N.P., Surf. Coat. Technol., 2018, vol. 337, pp. 335–341.

    Article  Google Scholar 

  23. 23

    Wan, Y., Yu, Y., Cao, L., Zhang, M., et al., Surf. Coat. Technol., 2016, vol. 307, pp. 316–323.

    Article  Google Scholar 

  24. 24

    Gutsev, D., Antonov, M., Hussainova, I., and Grigoriev, A.Y., Tribol. Int., 2013, vol. 65, pp. 295–302.

    Article  Google Scholar 

  25. 25

    Hazan, Y.D., Zimmermann, D., Zgraggen, M., Roos, S., et al., Surf. Coat. Technol., 2010, vol. 204, pp. 3464–3470.

    Article  Google Scholar 

  26. 26

    Azadi, M., Zolfaghari, M., and Rezanezhad, S., Appl. Phys. A, 2018, vol. 124, p. 377.

    Article  Google Scholar 

  27. 27

    Buchtik, M., Kosa, P., Wasserbauer, J., and Zmrzly, M., Acta Univ. Agric. Silvic. Mendelianae Brun., 2016, vol. 64, pp. 1459–1464.

    Article  Google Scholar 

  28. 28

    Attar, A.S., Ayubikia, G., and Ehteshamzadeh, M., Surf. Coat. Technol., 2016, vol. 307, pp. 837–848.

    Article  Google Scholar 

  29. 29

    Mollaei, M., Azadi, M., and Tavakoli H.A., Appl. Phys. A, 2018, vol. 124, p. 504.

    Article  Google Scholar 

  30. 30

    Tavakoli, H., Surf. Coat. Technol., 2017, vol. 309, pp. 1099–1104.

    Article  Google Scholar 

  31. 31

    Peyqambarian, M., Azadi, M., and Ahangarani, S., Surf. Coat. Technol., 2019, vol. 366, pp. 366–374.

    Article  Google Scholar 

  32. 32

    Neuville, S. and Matthews, A., Thin Solid Films, 2007, vol. 515, pp. 6619–6653.

    Article  Google Scholar 

  33. 33

    Fayyad, E.M., Abdullah, A.M., Hassan, M.K., Mohamed, A.M., et al., Coatings, 2018, vol. 8, pp. 37–50.

    Article  Google Scholar 

  34. 34

    Belakhmima, R.A., Errahmany, N., Ebn-Touhami, M., Larhzil, H., et al., J. Assoc. Arab Univ. Basic Appl. Sci., 2017, vol. 24, pp. 46–53.

    Google Scholar 

  35. 35

    Tamilarasan, T.R., Sanjith, U., Shankar, M.S., and Rajagopal, G., Wear, 2017, vols. 390–391, pp. 358–391.

    Google Scholar 

  36. 36

    King, A.D., Birbilis, N., and Scully, J.R., Electrochim. Acta, 2014, vol. 121, pp. 394–406.

    Article  Google Scholar 

  37. 37

    Dominguez, A.S., Bueno, J.J.P., Torres, I.Z., and Lopez, M.L.M., Surf. Coat. Technol., 2017, vol. 326, pp. 192–199.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mahboobeh Azadi.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freshteh Amjadi Eranegh, Azadi, M. & Tavakoli, H. Effect of SiO2 Nanoparticles Addition on Tribological and Electrochemical Behaviors of Ni–P–MoS2 Multi-Component Coatings after Heat Treatment. Surf. Engin. Appl.Electrochem. 56, 171–183 (2020). https://doi.org/10.3103/S1068375520020064

Download citation


  • Ni–P–MoS2–SiO2 nanocomposite coating
  • electroless
  • tribological property
  • wear
  • microstructure
  • electrochemical properties