Skip to main content

On the Influence of Cold Working and Electrochemical Nitridation on the Corrosion Behaviour of 316L Austenitic Stainless Steel in Acidic Environment

Abstract

The present paper investigates the effect of cold working and electrochemical nitridation on corrosion resistance of 316L austenitic stainless steel (ASS). The X-ray diffraction results showed that the strain-induced martensite is formed on cold work. Also, the volumetric fraction of strain induced martensite and dislocation density increased with increase in degree of cold work. The cold working process adversely affects the corrosion resistance of 316L ASS due to the formation of the strain-induced martensite and increased dislocation density. On electrochemical nitridation, the electrochemical results show the formation of stable passive film, thus improving the corrosion resistance of 316L ASS attributed to the formation of nitrides on the surface. Moreover, the beneficial effect of electrochemical nitridation is more pronounced in cold worked samples, thus the adverse effects of cold working can be overcome by electrochemical nitridation.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Sedriks, A.J., Corrosion of Stainless Steels, New York: Wiley, 1996, 2nd ed.

    Google Scholar 

  2. Schille, J.P., Guo, Z., Saunders, N., and Miodownik, A.P., Mater. Manuf. Process., 2011, vol. 26, pp. 137–143.

    Article  Google Scholar 

  3. Tandon, V., Patil, A.P., and Rathod, R., Mater. Res. Express., 2018, vol. 5, p. 086515.

    Article  Google Scholar 

  4. Peguet, L., Malki, B., and Baroux, B., Corros. Sci., 2007, vol. 49, pp. 1933–1948.

    Article  Google Scholar 

  5. Gomes de Abreu, H.F., Santana de Carvalho, S., de Lima Neto, P., Pires dos Santos, R., Freirea, V.N., et al., Mater. Res., 2007, vol. 10, pp. 359–362.

    Article  Google Scholar 

  6. Mirzadeh, H. and Najafizadeh, A., Mater. Charact., 2008, vol. 59, pp. 1650–1654.

    Article  Google Scholar 

  7. Olefjord, I. and Elfstrom, B.O., Corrosion, 1982, vol. 38, pp. 46–52.

    Article  Google Scholar 

  8. Liu, X., Han, E.H., and Wu, X., Corros. Sci., 2014, vol. 78, pp. 200–207.

    Article  Google Scholar 

  9. Raja, K.S. and Jones, D.A., Corros. Sci., 2006, vol. 48, pp. 1623–1638.

    Article  Google Scholar 

  10. Sedriks A. J. Corrosion. 1986, 42, 376–389.

  11. Mudali, K., Shankar, P., Ningshen, S., Dayal, R.K., et al., Corros. Sci., 2002, vol. 44, pp. 2183–2198.

    Article  Google Scholar 

  12. Nakada, N., Ito, H., Matsuoka, Y., Tsuchiyama, T., et al., Acta Mater., 2010, vol. 58, pp. 895–903.

    Article  Google Scholar 

  13. Kurc, A., Kciuk, M., and Basiaga, M., J. Achiev. Mater. Manuf. Eng., 2010, vol. 28, pp. 154–162.

    Google Scholar 

  14. Elayaperumal, K., De, P.K., and Balachandra, J., Corrosion, 1972, vol. 28, pp. 269–273.

    Article  Google Scholar 

  15. Palit, G.C., Kain, V., and Gadiyar, H.S., Corrosion, 1993, vol. 49, pp. 977–991.

    Article  Google Scholar 

  16. Tandon, V., Patil, A.P., Rathod, R.C., and Shukla, S., Mater. Res. Exp., 2018, vol. 5, art. ID 026528.

  17. Lecroisey, F. and Pineau, A., Metall. Trans. B, 1972, vol. 3, pp. 387–396.

    Article  Google Scholar 

  18. Randak, A. and Trautes, F.W., Werks Korros., 1970, vol. 21, pp. 97–109.

    Article  Google Scholar 

  19. Hamada, A.S., Karjalainen, L.P., and Somani, M.C., Mater. Sci. Eng., A, 2006, vol. 431, pp. 211–217.

    Article  Google Scholar 

  20. Barbucci, A., Cerisola, G., and Cabot, P.L., J. Electrochem. Soc., 2002, vol. 149, pp. B534–B542.

    Article  Google Scholar 

  21. Mani, S.P., Anandanb, C., and Rajendran, N., RSC Adv., 2015, vol. 5, pp. 64466–64470.

    Article  Google Scholar 

  22. Lv, J., Liang, T., and Luo, H., J. Power Sources, 2015, vol. 293, pp. 692–697.

    Article  Google Scholar 

  23. Wang, J. and Zhang, L.F., Anti-Corros. Methods Mater., 2017, vol. 64, pp. 252–262.

    Article  Google Scholar 

  24. Bentley, A.P. and Smith, G.C., Metall. Trans. A, 1986, vol. 17, pp. 1593–1600.

    Article  Google Scholar 

  25. Sarkar, A., Bhowmik, A., and Suwas, S., Appl. Phys. A, 2008, vol. 94, pp. 943–948.

    Article  Google Scholar 

  26. Krishna, N.N., Tejas, R., Sivaprasad, K., and Venkateswarlu, K., Mater. Des., 2013, vol. 52, pp. 785–790.

    Article  Google Scholar 

  27. Multigner, M., Frutos, E., González-Carrasco, J.L., Jiménez, J.A., et al., Mater. Sci. Eng., C, 2009, vol. 29, pp. 1357–1360.

    Article  Google Scholar 

  28. Brug, G.J., Vandeneeden, A.L.G., Sluytersrehbach, M., and Sluyters, J.H., J. Electroanal. Chem., 1984, vol. 176, pp. 275–295.

    Article  Google Scholar 

  29. Escrivà-Cerdán, C., Blasco-Tamarit, E., García-García, D.M., García-Antón, J., and Guenbour, A., Electrochim. Acta, 2012, vol. 80, pp. 248–256.

    Article  Google Scholar 

  30. Hsu, C.H. and Mansfeld, F., Corrosion, 2001, vol. 57, pp. 747–748.

    Article  Google Scholar 

  31. Lu, K., Mater. Sci. Eng., R, 1996, vol. 16, pp. 161–221.

    Article  Google Scholar 

  32. Friedel, J., Dislocations, Oxford: Pergamon, 1964.

    MATH  Google Scholar 

  33. Rangel, C.M., Silva, T.M., Da, M., and Belo, C., Electrochim. Acta, 2005, vol. 50, pp. 5076–5082.

    Article  Google Scholar 

  34. Luo, H., Su, H., Ying, G., Dong, C., et al., Appl. Surf. Sci., 2017, vol. 425, pp. 628–638.

    Article  Google Scholar 

  35. Wang, H., Teeter, G., and Turner, J.A., J. Mater. Chem., 2011, vol. 21, pp. 2064–2066.

    Article  Google Scholar 

  36. Burstein, G.T., Hutchings, I.M., and Sasaki, K., Nature, 2000, vol. 407, pp. 885–887.

    Article  Google Scholar 

  37. Tong, W.P., Tao, N.R., Wang, Z.B., Lu, J., et al., Science, 2003, vol. 299, pp. 686–688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tandon.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vipin Tandon, Awanikumar P. Patil On the Influence of Cold Working and Electrochemical Nitridation on the Corrosion Behaviour of 316L Austenitic Stainless Steel in Acidic Environment. Surf. Engin. Appl.Electrochem. 56, 63–70 (2020). https://doi.org/10.3103/S1068375520010147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520010147

Keywords:

  • cold working
  • strain induced martensite
  • dislocation density
  • electrochemical nitridation
  • corrosion