Abstract
The present paper investigates the effect of cold working and electrochemical nitridation on corrosion resistance of 316L austenitic stainless steel (ASS). The X-ray diffraction results showed that the strain-induced martensite is formed on cold work. Also, the volumetric fraction of strain induced martensite and dislocation density increased with increase in degree of cold work. The cold working process adversely affects the corrosion resistance of 316L ASS due to the formation of the strain-induced martensite and increased dislocation density. On electrochemical nitridation, the electrochemical results show the formation of stable passive film, thus improving the corrosion resistance of 316L ASS attributed to the formation of nitrides on the surface. Moreover, the beneficial effect of electrochemical nitridation is more pronounced in cold worked samples, thus the adverse effects of cold working can be overcome by electrochemical nitridation.
This is a preview of subscription content, access via your institution.








REFERENCES
Sedriks, A.J., Corrosion of Stainless Steels, New York: Wiley, 1996, 2nd ed.
Schille, J.P., Guo, Z., Saunders, N., and Miodownik, A.P., Mater. Manuf. Process., 2011, vol. 26, pp. 137–143.
Tandon, V., Patil, A.P., and Rathod, R., Mater. Res. Express., 2018, vol. 5, p. 086515.
Peguet, L., Malki, B., and Baroux, B., Corros. Sci., 2007, vol. 49, pp. 1933–1948.
Gomes de Abreu, H.F., Santana de Carvalho, S., de Lima Neto, P., Pires dos Santos, R., Freirea, V.N., et al., Mater. Res., 2007, vol. 10, pp. 359–362.
Mirzadeh, H. and Najafizadeh, A., Mater. Charact., 2008, vol. 59, pp. 1650–1654.
Olefjord, I. and Elfstrom, B.O., Corrosion, 1982, vol. 38, pp. 46–52.
Liu, X., Han, E.H., and Wu, X., Corros. Sci., 2014, vol. 78, pp. 200–207.
Raja, K.S. and Jones, D.A., Corros. Sci., 2006, vol. 48, pp. 1623–1638.
Sedriks A. J. Corrosion. 1986, 42, 376–389.
Mudali, K., Shankar, P., Ningshen, S., Dayal, R.K., et al., Corros. Sci., 2002, vol. 44, pp. 2183–2198.
Nakada, N., Ito, H., Matsuoka, Y., Tsuchiyama, T., et al., Acta Mater., 2010, vol. 58, pp. 895–903.
Kurc, A., Kciuk, M., and Basiaga, M., J. Achiev. Mater. Manuf. Eng., 2010, vol. 28, pp. 154–162.
Elayaperumal, K., De, P.K., and Balachandra, J., Corrosion, 1972, vol. 28, pp. 269–273.
Palit, G.C., Kain, V., and Gadiyar, H.S., Corrosion, 1993, vol. 49, pp. 977–991.
Tandon, V., Patil, A.P., Rathod, R.C., and Shukla, S., Mater. Res. Exp., 2018, vol. 5, art. ID 026528.
Lecroisey, F. and Pineau, A., Metall. Trans. B, 1972, vol. 3, pp. 387–396.
Randak, A. and Trautes, F.W., Werks Korros., 1970, vol. 21, pp. 97–109.
Hamada, A.S., Karjalainen, L.P., and Somani, M.C., Mater. Sci. Eng., A, 2006, vol. 431, pp. 211–217.
Barbucci, A., Cerisola, G., and Cabot, P.L., J. Electrochem. Soc., 2002, vol. 149, pp. B534–B542.
Mani, S.P., Anandanb, C., and Rajendran, N., RSC Adv., 2015, vol. 5, pp. 64466–64470.
Lv, J., Liang, T., and Luo, H., J. Power Sources, 2015, vol. 293, pp. 692–697.
Wang, J. and Zhang, L.F., Anti-Corros. Methods Mater., 2017, vol. 64, pp. 252–262.
Bentley, A.P. and Smith, G.C., Metall. Trans. A, 1986, vol. 17, pp. 1593–1600.
Sarkar, A., Bhowmik, A., and Suwas, S., Appl. Phys. A, 2008, vol. 94, pp. 943–948.
Krishna, N.N., Tejas, R., Sivaprasad, K., and Venkateswarlu, K., Mater. Des., 2013, vol. 52, pp. 785–790.
Multigner, M., Frutos, E., González-Carrasco, J.L., Jiménez, J.A., et al., Mater. Sci. Eng., C, 2009, vol. 29, pp. 1357–1360.
Brug, G.J., Vandeneeden, A.L.G., Sluytersrehbach, M., and Sluyters, J.H., J. Electroanal. Chem., 1984, vol. 176, pp. 275–295.
Escrivà-Cerdán, C., Blasco-Tamarit, E., García-García, D.M., García-Antón, J., and Guenbour, A., Electrochim. Acta, 2012, vol. 80, pp. 248–256.
Hsu, C.H. and Mansfeld, F., Corrosion, 2001, vol. 57, pp. 747–748.
Lu, K., Mater. Sci. Eng., R, 1996, vol. 16, pp. 161–221.
Friedel, J., Dislocations, Oxford: Pergamon, 1964.
Rangel, C.M., Silva, T.M., Da, M., and Belo, C., Electrochim. Acta, 2005, vol. 50, pp. 5076–5082.
Luo, H., Su, H., Ying, G., Dong, C., et al., Appl. Surf. Sci., 2017, vol. 425, pp. 628–638.
Wang, H., Teeter, G., and Turner, J.A., J. Mater. Chem., 2011, vol. 21, pp. 2064–2066.
Burstein, G.T., Hutchings, I.M., and Sasaki, K., Nature, 2000, vol. 407, pp. 885–887.
Tong, W.P., Tao, N.R., Wang, Z.B., Lu, J., et al., Science, 2003, vol. 299, pp. 686–688.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Vipin Tandon, Awanikumar P. Patil On the Influence of Cold Working and Electrochemical Nitridation on the Corrosion Behaviour of 316L Austenitic Stainless Steel in Acidic Environment. Surf. Engin. Appl.Electrochem. 56, 63–70 (2020). https://doi.org/10.3103/S1068375520010147
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.3103/S1068375520010147
Keywords:
- cold working
- strain induced martensite
- dislocation density
- electrochemical nitridation
- corrosion