Skip to main content
Log in

Electrodeposition of Fe–W Alloys from Citrate Bath: Impact of Anode Material

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the anode material on the rate of electrodeposition of Fe−W alloy coatings from a citrate bath is studied. Both Fe and Ni soluble anodes and Pt and graphite insoluble anodes are addressed. The effects associated with the anode material are attributed to anodic oxidation of an Fe(II)−citrate complex involved in electrodeposition. In addition to its likely oxidation at the anode, this complex catalyzes reduction of W-containing species and acts as precursor to Fe deposition; these processes unfold via the formation of corresponding intermediates, their surface coverage determining the alloy composition. X-ray photoelectron spectroscopy characterization of deposited alloys indicates that the intermediate FeOHads is oxidized by water to form surface oxides. This process can explain the previously reported macroscopic size effect, i.e., the effect of the volume current density on the microhardness of deposited alloys. By using a soluble iron anode, we achieve an unprecedentedly high rate of alloy deposition (25 μm/h at a current density of 20 mA/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Eliaz, N. and Gileadi, N., Mod. Aspects Electrochem., 2008, vol. 42, pp. 191–301. https://doi.org/10.1007/978-0-387-49489-0_4

    Article  Google Scholar 

  2. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., et al., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, pp. 491–520. https://doi.org/10.3103/s1068375512060038

    Article  Google Scholar 

  3. Cesiulis, H., Tsyntsaru, N., Podlaha, E., Li D., et al., Curr. Nanosci., 2018, vol. 14, pp. 1–16. https://doi.org/10.2174/1573413714666180410154104

    Article  Google Scholar 

  4. Brenner, A., Electrodeposition of Alloys: Principle and Practice, New York: Academic, 1963. https://doi.org/10.1016/b978-1-4831-9807-1.50032-5

    Google Scholar 

  5. Podlaha, E.J. and Landolt, D., J. Electrochem. Soc., 1996, vol. 143, pp. 884–893. https://doi.org/10.1149/1.1836554

    Article  Google Scholar 

  6. Podlaha, E.J. and Landolt, D., J. Electrochem. Soc., 1996, vol. 143, pp. 893–896. https://doi.org/10.1149/1.1836554

    Article  Google Scholar 

  7. Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, pp. 228–234. https://doi.org/10.3103/s106837551503014x

    Article  Google Scholar 

  8. Belevskii, S.S., Bobanova, Zh.I., Buravets, V.A., Gotelyak, A.V., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 9, pp. 1427–1433. https://doi.org/10.1134/s107042721609007x

    Article  Google Scholar 

  9. Gotelyak, A.V., Silkin, S.A., Yahova E.A., and Dikusar, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 4, pp. 541–546. https://doi.org/10.1134/s1070427217040085

    Article  Google Scholar 

  10. Silkin, S.A., Gotelyak, A.V., Tsyntsaru, N.I., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 1, pp. 6–13. https://doi.org/10.3103/s1068375517010136

    Article  Google Scholar 

  11. Danil’chuk, V.V., Silkin, S.A., Gotelyak, A.V., Buravets, V.A., et al., Russ. J. Electrochem., 2018, vol. 54, no. 11, pp. 930–936. https://doi.org/10.1134/s1023193518130116

    Article  Google Scholar 

  12. Belevskii, S.S., Gotelyak, A.V., Silkin, S.A., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 1, pp. 46–52. https://doi.org/10.3103/s1068375519010058

    Article  Google Scholar 

  13. Krasikov, V.L., Byull. S-Peterb. Gos. Tekh. Univ., 2015, no. 31, pp. 40–43. https://doi.org/10.15217/issn1998984-9.2015.31.40

  14. Krasikov, V.L. and Krasikov, A.V., Byull. S-Peterb. Gos. Tekh. Univ., 2016, no. 36, pp. 12–23. https://doi.org/10.15217/issn1998984-9.2016.36.12

  15. Krasikov, A.V. and Krasikov, V.L., Byull. S-Peterb. Gos. Tekh. Univ., 2016, no. 37, pp. 8–14. https://doi.org/10.15217/issn1998984-9.2016.37.8

  16. Holt, L. and Black, R., J. Electrochem. Soc., 1942, vol. 82, no. 1, p. 205. https://doi.org/10.1149/1.3071408

    Article  Google Scholar 

  17. Brenner, A., Burkhead, P.S., and Seegniller, E., J. Res. Bur. Stand., 1947, vol. 39, pp. 351–383. https://doi.org/10.6028/jres.039.023

    Article  Google Scholar 

  18. Donten, M., Cesiulis, H., and Stojek, Z., Electrochim. Acta, 2000, vol. 45, pp. 3389–3396. doi 00437-0https://doi.org/10.1016/s0013-4686(00)

  19. Gamburg, Yu., Zahkarov, E., and Gorynov, G., Russ. J. Electrochem., 2001, vol. 37, pp. 670–673. https://doi.org/10.1023/a:1016752231015

    Article  Google Scholar 

  20. Tsyntsaru, N., Bobanova, J., Ye, X., Cesiulis, H., et al., Surf. Coat. Technol., 2009, vol. 203, pp. 3136–3141. https://doi.org/10.1016/j.surfcoat.2009.03.041

    Article  Google Scholar 

  21. Bobanova, Zh.I., Dikusar, A.I., Cesiulis, H., Celis, J.-P., et al., Russ. J. Electrochem., 2009, vol. 45, pp. 895–901. https://doi.org/10.1134/s1023193509080096

    Article  Google Scholar 

  22. He, F., Yang, J., Lei, T., and Gu, C., Appl. Surf. Sci., 2007, vol. 253, pp. 7591–7598. https://doi.org/10.1134/s1023193509080096

    Article  Google Scholar 

  23. Yermolenko, I.Y., Ved, M.V., Sakhnenko, N.D., and Sachanova, Y.I., Nanoscale Res. Lett., 2017, vol. 12, no. 1, p. 352. https://doi.org/10.1186/s11671-017-2128-3

    Article  Google Scholar 

  24. Yar-Mukhaamedova, G., Ved, M., Sakhnenko, N., Karakurkchi, A., et al., Appl. Surf. Sci., 2016, vol. 383, pp. 346–352. https://doi.org/10.1016/j.apsusc.2016.04.046

    Article  Google Scholar 

  25. Nicolenko, A., Tsyntsaru, N., and Cesiulis, H., J. Electrochem. Soc., 2017, vol. 164, no. 9, pp. D590–D596. https://doi.org/10.1149/2.1001709jes

    Article  Google Scholar 

  26. Gamburg, Yu.D. and Zaharov, E.N., Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 4, pp. 402–409. https://doi.org/10.3103/s1068p75519040033

    Article  Google Scholar 

  27. Belevskii, S.S., Gotelyak, A.V., Yuschenko, S.P., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 2, pp. 119–129. https://doi.org/10.3103/s1068375519020054

    Article  Google Scholar 

  28. Thangaraj, N., Tamilarasn, K., and Sasikumar, D., Indian J. Pure Appl. Phys., 2014, vol. 52, pp. 395–398.

    Google Scholar 

  29. Kuznetsov, V., Golyanin, K., and Pshenichkina, T., Russ. J. Electrochem., 2012, vol. 52, pp. 1107–1112. https://doi.org/10.1134/s1023193512110109

    Article  Google Scholar 

  30. Wang S., Zeng C., Ling Y., Wang J., et al., Surf. Coat. Technol., 2016, vol. 286, pp. 36–41. https://doi.org/10.1016/j.surfcoat.2015.12.011

    Article  Google Scholar 

  31. Tsyntsaru, N., Bobanova, Zh.I., Kroitoru, D., Cheban, V.F., et al., Surf. Eng. Appl. Electrochem., 2010, vol. 46, pp. 346–352. https://doi.org/10.3103/s1068375510060025

    Article  Google Scholar 

  32. Nicolenko, A., Tsyntsaru, N., Fornell, J., Pellicer, E., et al., Mater. Des., 2018, vol. 139, pp. 429–438. https://doi.org/10.1016/j.matdes.2018.07.038

    Article  Google Scholar 

  33. Ishida, K., Morikawa, T., Miyake, M., and Hirato, T., J. Surf. Finish Soc. Jpn., 2016, vol. 67, no. 9, pp. 489–493. doi 104139/stj.67.489

  34. Madore, C., West, A.C., Matlosh, H., and Landolt, D., Electrochim. Acta, 1992, vol. 37, no. 1, p. 69. https://doi.org/10.1016/0013-4686(92)80013-c

    Article  Google Scholar 

  35. Silkin, S.A., Belevskii, S.S., Gradinar, A., et al., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 3, pp. 206–214. https://doi.org/10.3103/s1068375510030026

    Article  Google Scholar 

  36. Cox, J. and Cummings, E.A., J. Electroanal. Chem., 1973, vol. 42, pp. 153–157. https://doi.org/10.1016/s0022-0728(73)80087-7

  37. Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 1, pp. 97–98. https://doi.org/10.3103/s1068375512010036

    Article  Google Scholar 

  38. Belevskii, S.S., Buravets, V.A., Yushchenko, S.P., Zgardan, I.M., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 4, pp. 350–355. https://doi.org/10.3103/s1068375516040049

    Article  Google Scholar 

  39. Belevskii, S.S., Buravets, V.A., Yushchenko, S.P., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 5, pp. 420–426. https://doi.org/10.3103/s1068375516050057

    Article  Google Scholar 

  40. Sun, S., Bairachna, T., and Podlaha, E.J., J. Electrochem. Soc., 2013, vol. 160, no. 10, pp. D434–D440. https://doi.org/10.1149/2.014310jes

    Article  Google Scholar 

  41. Belevskii, S.S., Cesiulis, H., Tsyntsaru, N., and Dikusar, A.I., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 6, pp. 570–578. https://doi.org/10.3103/s1068375510060050

    Article  Google Scholar 

  42. Donten, M., J. Solid State Electrochem., 1999, vol. 3, pp. 87–96. https://doi.org/10.1007/s100080050133

    Article  Google Scholar 

  43. Mulone, A., Nicolenco, A., Hoffmann, V., Klement, U., Tsyntsaru, N., et al., Electrochim. Acta, 2018, vol. 261, pp. 167–177. https://doi.org/10.1016/j.electacta.2017.12.051

    Article  Google Scholar 

  44. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Chem. Eng. Sci., 2018, vol. 183, pp. 123–135. https://doi.org/10.1016/j.ces.2018.03.019

    Article  Google Scholar 

Download references

Funding

This work was supported by the budget of the institutional project of the Institute of Applied Physics “Physicochemical Methods for Obtaining New Materials and Surfaces for Multiscale Technologies” (no. 15.817.02.05A), the H2020 project “Smartelectrodes” (no. 778357), and by Shevchenko Pridnestrovie State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dikusar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belevskii, S.S., Danilchuk, V.V., Gotelyak, A.V. et al. Electrodeposition of Fe–W Alloys from Citrate Bath: Impact of Anode Material. Surf. Engin. Appl.Electrochem. 56, 1–12 (2020). https://doi.org/10.3103/S1068375520010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520010020

Keywords:

Navigation