Skip to main content
Log in

Improving Spatial Confinement of Anodic Dissolution of Heat-Resistant Chromium−Nickel Alloys during Pulsed Electrochemical Machining

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Using a microsecond-pulsed current (20 μs) for the high-rate anodic dissolution of heat-resistant chromium−nickel alloys (current density amplitudes up to 100 A/cm2) can enable the improvement of the spatial confinement of anodic dissolution due to the presence of a growing dependence of current efficiency on the current density observed in these conditions. This effect, however, is limited to chromium−nickel steel only, and the duty cycle must be at least 4. We hypothesize that this dependence arises from thermokinetic effects that manifest as a series of interrelated processes with positive feedback: rate of electrochemical reaction (current density)−surface temperature−rate of electrochemical reaction. In certain critical conditions, this relationship results in thermokinetic instability and destruction of passive surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Davydov, A.D. and Kozak, E., Vysokoskorostnoe elektrokhimicheskoie formoobrazovanie (High-Speed Electrochemical Forming), Moscow: Nauka, 1990.

  2. McGeough, J.A., Principles of Electrochemical Machining, London: Chapman and Hall, 1974.

    Google Scholar 

  3. Davydov, A.D., Volgin, V.M., and Lyubimov, V.V., Russ. J. Electrochem., 2004, vol. 40, no. 12, pp. 1230–1265.

    Article  Google Scholar 

  4. Rajukar, K.P., Kozak, J., Wei, B., and McGeough, J.A., CIRP Ann., 1993, vol. 42, no. 1, pp. 231–234.

    Article  Google Scholar 

  5. Rajukar, K.P., Wei, B., Kozak, J., and McGeough, J.A., CIRP Ann., 1995, vol. 44, no. 1, pp. 177–180.

    Article  Google Scholar 

  6. Kozak, J., Rajukar, K.P., and Makkar, Y., J. Manuf. Proc., 2004, vol. 6, no. 1, pp. 7–14.

    Article  Google Scholar 

  7. Spieser, A. and Ivanov, A., Int. J. Adv. Manuf. Technol., 2013, vol. 69, nos. 1–4, pp. 563–581.

    Article  Google Scholar 

  8. Idrisov, T.R., Zaitsev, A.N., and Zhitnikov, V.P., J. Mater. Process. Technol., 2004, vol. 149, nos. 1–3, pp. 479–489.

    Article  Google Scholar 

  9. Zhu, D., Zhou, Y., Zhang, R., and Qin, R., Int. J. Adv. Manuf. Technol., 2016, vol. 86, nos. 5–8, pp. 1723–1732.

    Article  Google Scholar 

  10. Zhitnikov, V.P., Sherykhalina, N.M., and Zaripov, A.A., J. Mater. Process. Technol., 2016, vol. 235, pp. 49–54.

    Article  Google Scholar 

  11. Volgin, V.M., Luibimov, V.V., Gnidina, I.V., et al., Procedia CIRP, 2016, vol. 55, pp. 65–70.

    Article  Google Scholar 

  12. Rybalko, A.V. and Dikusar, A.I., Elektrokhimiya, 1994, vol. 30, no. 4, pp. 490–498.

    Google Scholar 

  13. Schuster, R., Kirchner, V., Allonque, V., and Ertl, G., Science, 2000, vol. 289, pp. 98–101.

    Article  Google Scholar 

  14. Cagnon, L., Kirchner, V., Schuster, R., Rock, M., et al., Z. Phys. Chem., 2003, vol. 217, no. 4, pp. 299–314.

    Article  Google Scholar 

  15. Trimmer, A., Hudson, L., Rock, M., and Schuster, R., Appl. Phys. Lett., 2003, vol. 82, no. 14, pp. 3327–3329.

    Article  Google Scholar 

  16. Schuster, R. and Kirchner, V., US Patent 6689269B1, 2004.

  17. Schuster, R., Chem. Phys. Chem., 2007, vol. 8, no. 1, pp. 34–39.

    Article  Google Scholar 

  18. Eliseev, Yu.S., Krymov, V.V., Mitrofanov, A.A., et al., Fiziko-khimicheskie metody obrabotki v proizvodstve gazoturbinnykh dvigatelei (Physical-Chemical Techniques in Manufacturing of Gas Turbine Engines), Sushkin, B.P., Ed., Moscow: Drofa, 2002.

    Google Scholar 

  19. Dikusar, A.I., Engel’gardt, G.R., and Molin, A.N., Termokineticheskie yavleniya pri vysoko-skorostnykh elektrodnykh protsessakh (Thermokinetic Phenomena in High-Speed Electrode Processes), Chisinau: Shtiintsa, 1989.

  20. Engelgardt, G.R. and Dikusar, A.I., J. Electroanal. Chem., 1986, vol. 207, pp. 1–10.

    Article  Google Scholar 

  21. Dikusar, A.I., Molin, A.N., Petrenko, V.I., et al., J. Electroanal. Chem., 1986, vol. 207, pp. 1–11.

    Article  Google Scholar 

  22. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Chem. Eng. Sci., 2018, vol. 183, pp. 123–125.

    Article  Google Scholar 

  23. Dikusar, A.I., Engel’gardt, G.R., Petrenko, V.I., and Petrov, Yu.N., Elektrodnye protsessy i protsessy perenosa pri elektrokhimicheskoi razmernoi obrabotke metallov (Electrode and Transfer Processes in Electrochemical Size Processing of Metals), Chisinau: Shtiintsa, 1983.

  24. Chin, D.T. and Wallace, A.J., Jr., J. Electrochem. Soc., 1973, vol. 120, no. 11, pp. 1487–1493.

    Article  Google Scholar 

  25. Datta, M. and Landolt, D., Electrochim. Acta, 1980, vol. 25, no. 11, pp. 1263–1271.

    Article  Google Scholar 

Download references

Funding

This work was supported within institutional project 15.817.02.05.A (Moldova), the project “H2020 Smartelectrodes” (no. 778 357), and by the budget of Shevchenko Pridnestrovie State University (Moldova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dikusar.

Additional information

Translated by A. Kukharuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silkin, S.A., Aksenov, E.N., Likrizon, E.A. et al. Improving Spatial Confinement of Anodic Dissolution of Heat-Resistant Chromium−Nickel Alloys during Pulsed Electrochemical Machining. Surf. Engin. Appl.Electrochem. 55, 493–501 (2019). https://doi.org/10.3103/S1068375519050120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519050120

Keywords:

Navigation