Skip to main content
Log in

Temporary Evolution of the Amplitudes of Capillary Waves on the Surface of a Charged Jet, Moving Relative to a Material Dielectric Medium

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

A solution to the problem of calculating the temporary evolution of amplitudes of capillary waves of an arbitrary symmetry on the surface of a cylindrical jet of an ideal incompressible conductive liquid moving relative to an ideal incompressible dielectric medium is offered, taking into account multimodal initial conditions. Analytical expressions for the temporary evolution of the amplitudes of waves on a jet, amplitude values of hydrodynamic potentials of velocity fields on a jet and in a medium, and the electric potential of the field in the neighborhood of the jet. An assessment of the characteristic time of a separation of a drop from a jet is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kelvin Lord, W., London, Edinburgh Dublin Philos. Mag. J. Sci., Ser. 4, 1871, vol. 42, pp. 368–374.

    Google Scholar 

  2. Lord Rayleigh, F.R.S., Proc. Lond. Math. Soc., 1878, vol. 10, pp. 4–13.

    Article  MathSciNet  Google Scholar 

  3. Basset, A.B., Am. J. Math., 1894, 16, 93–110.

    Article  Google Scholar 

  4. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physical-Chemical Hydrodynamics), Moscow: Fizmatlit, 1959.

  5. Taylor, G., Proc. R. Soc. London, Ser. A, 1969, vol. 313, pp. 453–470.

    Article  Google Scholar 

  6. Entov, V.M. and Yarin, A.L., Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza, 1984, vol. 17, pp. 112–197.

    Google Scholar 

  7. Eggers, J., Rep. Prog. Phys., 2008, vol. 71, no. 36, pp. 1–79.

    Article  Google Scholar 

  8. Cloupeau, M. and Prunet Foch, B., J. Electrostat., 1990, vol. 25, pp. 165–184.

    Article  Google Scholar 

  9. Cloupeau, M. and Prunet Foch, B., J. Aerosol Sci., 1994, vol. 25, no. 6, pp. 1021–1035.

    Article  Google Scholar 

  10. Shiryaeva, S.O. and Grigor’ev, A.I., J. Electrostat., 1995, vol. 34, pp. 51–59.

    Article  Google Scholar 

  11. Jaworek, A. and Krupa, A., J. Aerosol Sci., 1999, vol. 30, no. 7, pp. 873–893.

    Article  Google Scholar 

  12. Shiryaeva, S.O., Tech. Phys., 2010, vol. 55, no. 4, pp. 457–463.

    Article  Google Scholar 

  13. Grigor’ev, A.I., Tech. Phys., 2009, vol. 54, no. 4, pp. 482–490.

    Article  Google Scholar 

  14. Kim, O.V. and Dunn, P.F., Langmuir, 2010, vol. 26, pp. 15807–15813.

    Article  Google Scholar 

  15. Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.

    Google Scholar 

  16. Zhakin, A.I., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 2, pp. 150–166.

    Article  Google Scholar 

  17. Landau, L.D. and Lifshitz, E.M., A Course of Theoretical Physics, Vol. 6: Fluid Mechanics, New York: Pergamon, 1959.

    Google Scholar 

  18. Landau, L.D. and Lifshitz, E.M., A Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, New York: Pergamon, 1971.

    MATH  Google Scholar 

  19. Nayfeh, A.H., J. Fluid Mech., 1971, vol. 48, no. 3, pp. 463–475.

    Article  MathSciNet  Google Scholar 

  20. Nayfeh, A.H., Perturbation Methods, New York: Wiley, 1973.

    MATH  Google Scholar 

  21. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Washington, DC U.S. Gov. Print. Off., 1972.

    MATH  Google Scholar 

  22. Grigor’ev, A.I., Mikheev, G.E., and Shiryaeva, S.O., Fluid Dyn., 2017, vol. 52, no. 5, pp. 599–609.

    Article  MathSciNet  Google Scholar 

  23. Luizov, A.V., Glaz i svet (Eye and Light), Leningrad: Energoatomizdat, 1983.

  24. Duft, D., Lebbeus, H., and Huber, B.A. Phys. Rev. Lett., 2002, vol. 89, no. 8, pp. 1–4.

    Article  Google Scholar 

  25. Duft, D., Achtzehn, T., Müller, R., et al., Nature, 2003, vol. 421, no. 919, p. 128.

    Article  Google Scholar 

  26. Grimm, R.L. and Beauchamp, J.L., J. Phys. Chem. B, 2005, vol. 109, pp. 8244–8250.

    Article  Google Scholar 

  27. Ametistov, E.V., Blazhenkov, V.V., Gorodov, A.K., et al., Monodispersnye veshchestva: printsipy i primenenie (Monodisperse Substances: Principles and Application), Grigor’ev, V.A., Ed., Moscow: Energoatomizdat, 1991.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Shiryaeva.

Additional information

Translated by M. Baznat

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, S.O., Grigor’ev, A.I. Temporary Evolution of the Amplitudes of Capillary Waves on the Surface of a Charged Jet, Moving Relative to a Material Dielectric Medium. Surf. Engin. Appl.Electrochem. 55, 556–566 (2019). https://doi.org/10.3103/S1068375519050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519050119

Keywords:

Navigation