Skip to main content
Log in

Application of Electrospark Deposition and Modified SHS Electrode Materials to Improve the Endurance of Hot Mill Rolls. Part 2. Structure and Properties of the Formed Coatings

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrospark deposition of coatings onto SPKhN–60 white cast iron samples has been undertaken in two stages. A barrier sublayer has been deposited at the first stage, using chromium and nickel electrodes, and a multifunctional protective coating was deposited at the second stage. The effect of the sublayer on coating properties upon application of STIM–40NAOKn (TiC–NiAl + \({\text{ZrO}}_{2}^{{{\text{nano}}}}\)) and STIM-11OKn (TiB2–NiAl + \({\text{ZrO}}_{2}^{{{\text{nano}}}}\)) electrodes is studied. The coating structures are investigated. The grain size of the refractory phase is found to be smaller than 100 nm. The application of double-layer coatings increased the wear and heat resistances of white cast iron samples. Pre-deposition of a nickel sublayer enhanced the heat resistance of STIM-11OKn coating over eightfold. The full-scale tests of the rolls strengthened using SHS electrodes were carried out and positive results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Ivanov, G.P., Tekhnologiya elektroiskrovogo uprochneniya instrumentov i detalei mahsin (Technology of Electrospark Hardening of Tools and Machine Parts), Moscow: Mashgiz, 1961.

  2. Bondarchuk, N.A., Teoreticheskie i tekhnologicheskie osnovy naplavki. Naplavka detalei oborudovaniya metallurgii i energetiki (Theoretical and Technological Principles of Surfacing. Surfacing of the Parts of Equipment for Metallurgy and Energetics), Frumin, I.I., Ed., Kiev: Inst. Elektrosvarki im. E.O. Patona, Akad. Nauk UkrSSR, 1980, pp. 62–67.

  3. Bondarchuk, N.A., Umerenkov, V.N., and Vol’pov, M.L., Sovrmennye sposoby naplavki, ikh primenenie (Modern Methods of Surfacing and Their Application), Frumin, I.I., Ed., Kiev: Inst. Elektrosvarki im. E.O. Patona, Akad. Nauk UkrSSR, 1982, pp. 118–120.

  4. Rudyuk, A.S., Bardusov, V.N., Foka, N.M., Pirch, A.P., et al., Stal’, 1990, no. 7, pp. 71–72.

  5. Rudyuk, A.S., Korobeinik, V.F., Abramov, G.S., and Ganzhala, A.G., Elektron. Obrab. Mater., 1990, no. 4, pp. 64–68.

  6. Zudov, E.G., Petrenko, Yu.P., Astaf’ev, G.I., Mardyshkin, R.E., and Avvakumov, S.B., Stal’, 1995, no. 1, p. 59.

  7. Fainshmidt, E.M., Astaf’ev, G.I., and Polomoshnov, P.Yu., Kuznechno-Shtampovochnoe Proizvod.–Obrab. Mater. Davleniem, 2011, no. 12, pp. 26–29.

  8. Gao, Y.X., Zhao, C., Fang, Z.G., and Yi, J., Adv. Mater. Res., 2011, vols. 160–162, pp. 176–181. https://doi.org/10.4028/www.scientific.net/AMR.160-162.176

    Article  Google Scholar 

  9. Wang, J., Meng, H., Yu, H., Fan, Z., et al., Int. J. Miner. Met. Mater., 2009, vol. 16, no. 6, pp. 707–713.

    Google Scholar 

  10. Levashov, E.A., Kudryashov, A.E., Sheveiko, A.N., Vakaev, P.V., et al., Tsvetn. Met., 2003, no. 6, pp. 73–77.

  11. Kudryashov, A.E., Doronin, O.N., Levashov, E.A., and Krakht, V.B., Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 4, pp. 394–402.

    Article  Google Scholar 

  12. Kudryashov, A.E., Doronin, O.N., Zamulaeva, E.I., Levashov, E.A., et al., Chern. Met., 2013, no. 10, pp. 61–68.

  13. Levashov, E.A., Bogatov, Yu.V., and Milovidov, A.A., Combust., Explos. Shock Waves (Engl. Transl.), 1991, vol. 27, no. 1, pp. 83–88.

  14. Levashov, E.A., Bogatov, Yu.V., Rogachev, A.S., et al., J. Eng. Phys. Thermophys., 1992, vol. 63, no. 5, pp. 1091–1105.

    Article  Google Scholar 

  15. Bogatov, Yu.V., Levashov, E.A., and Pityulin, A.N., Sov. Powder Metall. Met. Ceram., 1991, vol. 30, no. 7, pp. 596–598.

    Google Scholar 

  16. Levashov, E.A., Bogatov, Yu.V., Borovinskaya, I.P., and Korovyatskaya, M.V., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1993, no. 1, pp. 62–66.

  17. Bogatov, Yu.V., Levashov, E.A., Blinova, T.V., and Pityulin, A.N., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1994, no. 3, pp. 51–55.

  18. Levashov, E.A., Rogachev, A.s., Kurbatkina, V.V., Maksimov, Yu.M., et al., Perspektivnye materially i tekhnologii samorasprostranyayushchegosya vysoko-temperaturnogo sinteza (Advanced Materials and Technologies of Self-Propagating High-Temperature Synthesis), Moscow: Mosk. Inst. Stali Splavov, 2011.

  19. Babinets, A.A., Ryabtsev, I.A., Kondrat’ev, I.A., Ryabtsev, I.I., et al., Avtom. Svarka, 2014, no. 5, pp. 17–21.

  20. Ryabtsev, I.A., Babinets, A.A., Gordan’, G.N., Ryabtsev, I.I., et al., Avtom. Svarka, 2013, no. 9, pp. 43–47.

  21. Mikhailov, V.V., Gitlevich, A.E., Verkhoturov, A.D., Mikhailyuk, A.I., et al., Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 5, pp. 373–395.

    Article  Google Scholar 

  22. Mikhailov, V.V., Revutskii, V.M., Agafii, V.I., and Yanakevich, A.I., Tr. Vseross. Nauchno-Issled. Tekhnol. Inst. Remonta Eksp. Mash.-Trakt, Parka, 2013, vol. 111 (2), pp. 63–65.

    Google Scholar 

  23. Kaplina, G.S., Astakhov, E.A., Kil’dii, A.I., and Kucher, L.V., Svarshchik, 2009, no. 4, pp. 20–23.

  24. Zamulaeva, E.I., Levashov, E.A., Skryleva, E.A., Sviridova, T.A., et al., Surf. Coat. Technol., 2016, vol. 298, pp. 15–23. https://doi.org/10.1016/j.surfcoat.2016.04.058

    Article  Google Scholar 

  25. Fainshmidt, E.M., Pegashkin, V.F., Shevchenko, O.I., and Astaf’ev, G.I., Stal’, 2013, no. 10, pp. 88–89.

  26. Azarova, E.V., Levashov, E.A., Ral’chenko, V.G., Bol’shakov, A.P., et al., Metallurgist, 2010, vol. 54, nos. 7–8, pp. 523–529.

    Article  Google Scholar 

  27. Kudryashov, A.E., Zamulaeva, E.I., Levashov, E.A., Manakova, O.S., et al., Elektron. Obrab. Mater., 2018, vol. 54, no. 5, pp. 43–55. https://doi.org/10.5281/zenodo.1464851

    Article  Google Scholar 

  28. Pogozhev, Yu.S., Levashov, E.A., Kudryashov, A.E., Milonich, S., et al., Tsvetn. Met., 2005, no. 1, pp. 59–64.

  29. Voitovich, R.F. and Pugach, E.A., Okislenie tugoplavkikh soedinenii. Spravochnik (Oxidation of Refractory Compounds: Handbook), Samsonov, G.V., Ed., Kiev: Naukova Dumka, 1968.

    Google Scholar 

  30. Verkhoturov, A.D., Podchernyaeva, I.A., Pryadko, L.F., and Egorov, F.F., Elektrodnye materially dlya elektroiskrovogo legirovaniya (Electrode Materials for Electrospark Alloying), Moscow: Nauka, 1988.

  31. Samsonov, G.V., Serebryakova, T.I., Neronov, V.A., Boridy (Borides), Moscow: Atomizdat, 1975.

    Google Scholar 

  32. Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Titanium Carbide: Production, Properties, and Use), Moscow: Metallurgiya, 1987.

  33. Doronin, O.N., Smirnov, V.P., Boev, A.I., and Petrusha, A.A., Materialy 12-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 4–8 iyunya 2012 g. (Proc. Twelfth Int. Sci.-Tech. Conf., June 4–8, 2012), Kyiv: ATM Ukr., 2012, pp. 92–94.

Download references

Funding

The work has been carried out with the financial support from the Russian Science Foundation (Agreement no. 15-19-00203-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kudryashov.

Additional information

Translated by M. Myshkina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryashov, A.E., Zamulaeva, E.I., Levashov, E.A. et al. Application of Electrospark Deposition and Modified SHS Electrode Materials to Improve the Endurance of Hot Mill Rolls. Part 2. Structure and Properties of the Formed Coatings. Surf. Engin. Appl.Electrochem. 55, 502–513 (2019). https://doi.org/10.3103/S1068375519050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519050089

Keywords:

Navigation