Skip to main content
Log in

Preparation and Properties of an Aluminum Hydroxide-Modified Diatomite Sorbent for Removal of Fluorides from Waters

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new sorbent (Al-D) for the removal of fluoride ions is prepared by modifying diatomite with aluminum ions. The sorbent is studied using X-ray diffraction, thermogravimetry, X-ray photoelectron spectroscopy, and adsorption structure analysis; its ability to remove fluoride ions from model aqueous solutions is measured under static conditions. The diatomite, which is modified by heterogeneous hydrolysis of an aluminum salt in the presence of diatomite suspension, has a higher specific surface area and a greater sorption pore volume and exhibits excellent characteristics in fluoride adsorption. Fluoride sorption isotherms measured under equilibrium conditions are modeled using the Langmuir, Freundlich, Langmuir−Freundlich, Brunauer−Emmett−Teller, and two-step Langmuir equations. The model parameters are calculated. The two-step Langmuir model gives the best fit to the experimental isotherms (R2 = 0.9836). Fluoride adsorption on the sorbent Al-D occurs via ion exchange: surface OH groups are replaced with fluoride ions from solution to form aluminum fluoride complexes at the sorbent surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Waghmare, S.S. and Arfin, T., Int. J. Sci. Eng. Technol. Res., 2015, vol. 4, no. 11, pp. 3663–3676.

    Google Scholar 

  2. Li, Y., Yang, S., Jiang, Q., Fang, J., Wang, W., et al., Int. J. Environ. Res. Public Health, 2018, vol. 15, pp. 826–840.

    Article  Google Scholar 

  3. Manna, S., Roy, D., Adhikari, B., and Das, P., J. Environ. Manage., 2018, vol. 212, pp. 424–432.

    Article  Google Scholar 

  4. Kofa, G.P., Gomdje, V.H., Telegang, C. and Ndi Koungou, S., J. Appl. Chem., 2017, art. ID 6 254 683. https://doi.org/10.1155/2017/6254683

  5. Rout, T.K., Verma, R., and Dennis, R.V., J. Eng. Appl. Sci., 2015, vol. 5, pp. 38–52.

    Google Scholar 

  6. Waghmare, S., Lataye, D.H., Arfin, T., and Rayalu, S., Int. J. Innovative Res. Sci., Eng. Technol., 2015, vol. 4, no. 12, pp. 11998–12010.

    Google Scholar 

  7. Habuda-Stanic, M., Ergovic Ravancic, M., and Flanagan, A., Materials, 2014, vol. 7, no. 9, pp. 6317–6366.

    Article  Google Scholar 

  8. Yadav, K.K., Gupta, N., Kumar, V., Khan, S.A., et al., Environ. Int., 2018, vol. 111, pp. 80–108.

    Article  Google Scholar 

  9. Mukherjee, Sh. and Halder, G., J. Environ. Chem. Eng., 2018, vol. 6, no. 1, pp. 1257–1270.

    Article  Google Scholar 

  10. Bhatnagar, A., Kumar, E., and Sillanpa, M., Chem. Eng. J., 2011, vol. 171, pp. 811–840.

    Article  Google Scholar 

  11. Wambu, E.W., Onindo, Ch.O., Ambusso, W., and Muthakia, G.K., Clean: Soil, Air, Water, 2012, vol. 41, no. 4, pp. 340–348.

    Google Scholar 

  12. Zhou, J., Zhu, W., Yu, J., et al., Appl. Surf. Sci., 2018, vol. 435, pp. 920–927.

    Article  Google Scholar 

  13. Madhukar, M., Murthy, B.M.S., and Udayashankara, T.H., J. Water Pollut. Purif. Res., 2014, vol. 1, no. 2, pp. 1–12.

    Google Scholar 

  14. Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E., et al., J. Environ. Manage., 2009, vol. 91, pp. 67–77.

    Article  Google Scholar 

  15. Lavecchia, R., Medici, F., Piga, L., Rinaldi, G., et al., Chem. Eng. Trans., 2012, vol. 26, pp. 225–230.

    Google Scholar 

  16. Onyango, M.S., Kojima, Y., Aoyi, O., Bernardo, E.C., et al., J. Colloid Interface Sci., 2004, vol. 279, pp. 341–350.

    Article  Google Scholar 

  17. Zhu, M.-X., Xie, M., and Jiang, X., Appl. Geochem., 2006, vol. 21, pp. 675–683.

    Article  Google Scholar 

  18. Gitari, W.M. and Izuagie, A.A. in Proc. Research World Int. Conf., St. Petersburg, Russia, March 8–9, 2018, St. Petersburg, 2018, pp. 1–6.

  19. Gitari, W.M., Izuagie, A.A., and Gumbo, J.R., Desalin. Water Treat., 2016, vol. 57, no. 36, pp. 16 745–16 757.

    Google Scholar 

  20. Janta, S., Watanesk, S., Watanesk, R. and Thiansem, S., Adv. Mater., 2008, vols. 55–57, pp. 865–868.

    Google Scholar 

  21. Xu, L., Gao, X., Li, Z., and Gao, C., Desalination, 2015, vol. 369, pp. 97–104.

    Article  Google Scholar 

  22. Wambu, E.W., Onindo, C.O., Ambusso, W.J., and Muthakia, G.K., Mater. Sci. Appl., 2011, vol. 2, pp. 1654–1660.

    Google Scholar 

  23. Mahramanlioglu, M., Kizilcikli, I., and Bicer, I.O., J. Fluorine Chem., 2002, vol. 115, pp. 41–47.

    Article  Google Scholar 

  24. Datsko, T.Ya., Zelentsov, V.I., and Dvornikova, E.E., Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 6, pp. 530–539.

    Article  Google Scholar 

  25. Datsko, T.Ya. and Zelentsov, V.I., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 3, pp. 300–311.

    Article  Google Scholar 

  26. Srivastav, A.L., Singh, P.K., Srivastava, V., and Sharma, Y.C., J. Hazard. Mater., 2014, vol. 7, no. 9, pp. 6317–6366.

    Google Scholar 

  27. Kır, E., Oruc, H., Kırb, I., and Sardohan-Koseoglu, T., Desalin. Water Treat., 2016, vol. 57, no. 46, pp. 21 944–21 950.

    Article  Google Scholar 

  28. Izuagie, A.A., Gitari, W.M. and Gumbo, J.R., J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2016, vol. 51, no. 10, pp. 810–824.

    Article  Google Scholar 

  29. Al-Qodah Lafi, W.K., Al-Anber, Z., Al-Shannag, M., et al., Desalination, 2007, vol. 217, pp. 212–224.

  30. Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, pp. 2221–2295.

    Article  Google Scholar 

  31. Freundlich, H.M.F., J. Phys. Chem., 1906, vol. 57, pp. 385–471.

    Google Scholar 

  32. Kang, M., Chen, H., Sato, Y., Kamei, T., et al., Water Res., 2003, vol. 37, pp. 4599–4604.

    Article  Google Scholar 

  33. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1982.

    Google Scholar 

  34. Konda, L.N., Czinkota, I., Fuleky, G. and Morovjan, G., J. Agric. Food Chem., 2002, vol. 50, pp. 7326–7331.

    Article  Google Scholar 

  35. Wang, S.-G., Ma, Y., Shi, Y.-J., and Gong, W.-X., J. Chem. Technol. Biotechnol., 2009, vol. 84, pp. 1043–1050.

    Article  Google Scholar 

  36. Ayoob, S., Gupta, A.K., Bhakat, P.B., and Bhat, V.T., Chem. Eng. J., 2008, vol. 140, pp. 6–14.

    Article  Google Scholar 

  37. Moraru, K.E. and Zinchenko, O.D., Podzemnye vody (Underground Waters), Chisinau: Elena, 2005.

Download references

Funding

The work was supported by the Institute of Applied Physics (project no. 15.817.02.07.A) and the Russian Foundation for Basic Research (project no. 17-07-00524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zelentsov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kukharuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelentsov, V.I., Datsko, T.Y., Politova, E.D. et al. Preparation and Properties of an Aluminum Hydroxide-Modified Diatomite Sorbent for Removal of Fluorides from Waters. Surf. Engin. Appl.Electrochem. 55, 455–462 (2019). https://doi.org/10.3103/S1068375519040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519040161

Keywords:

Navigation