Skip to main content
Log in

Investigation on Microstructure, Wear Behavior and Microhardness of Al−Si/SiC Nanocomposite

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Aluminum matrix nano-composites have been widely used in various fields such as aerospace, automobile, and packing industries. In this study, the effect of nano-SiC content on the microst-ructure, wear resistance and micro-hardness of Al–Si/SiC nano-composite was investigated. In this regard, Al–Si matrix was reinforced by different amounts of nano-SiC: 0, 0.5, 1, 1.5, 3, 5, 10 wt %. The results showed that with increasing the nano-SiC weight ratio, nano-particles are agglomerated and unsuitable sintering increases the porosity, as pores and cavities. For more than 1.5% weight ratio of nano-SiC in the matrix, the wear resistance and the micro-hardness decreased. The results of the wear test, scanning electron microscopy, energy dispersive X-ray spectroscopy and worn surfaces showed that the dominant wear mechanism is controlled by nano-SiC contents. This study indicated that with adding nano-SiC particles more than the optimal content, wear resistance and micro-hardness of Al–Si/SiC nano-composite increased more than twice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L., Xu, H., Wang, Z., Li, Q., et al., J. Alloys Compd., 2016, vol. 678, pp. 23–30.

    Article  Google Scholar 

  2. Pramanik, A., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 348–358.

    Article  Google Scholar 

  3. Khadem, H., Nategh, S.A., and Yoozbashizadeh, S., J. Alloys Compd., 2011, vol. 509, pp. 2221–2226.

    Article  Google Scholar 

  4. Harichandran, R. and Selvakumar, N., Arch. Civ. Mech. Eng., 2016, vol. 16, pp. 147–158.

    Article  Google Scholar 

  5. Ram Prabhu, T., Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 20–31.

    Article  Google Scholar 

  6. Abdizadeh, H., Ashuri, M., Moghadam, P.T., Nouribahadory, A., et al., Mater. Des., 2011, vol. 32, pp. 4417–4423.

    Article  Google Scholar 

  7. Hu, Q., Zhao, H., and Li, F., Mater. Sci. Eng., A, 2016, vol. 667, pp. 251–260.

    Article  Google Scholar 

  8. Singh, J. and Chauhan, A., Ceram. Int., 2015, vol. 42, pp. 56–81.

    Article  Google Scholar 

  9. Rajeev, V.R., Dwivedi, D.K., and Jain, S.C., Mater. Des., 2010, vol. 31, pp. 4951–4959.

    Article  Google Scholar 

  10. Bensam Raj, J., Marimuthu, P., Prabhakar, M., and Anandakrishnan, V., Int. J. Adv. Des. Manuf. Technol., 2012, vol. 61, pp. 237–252.

    Article  Google Scholar 

  11. Chen, Z., Teng, J., Chen, G., Fu, D., et al., Wear, 2007, vol. 262, pp. 362–368.

    Article  Google Scholar 

  12. Terry, B. and Jones, G., Metal Matrix Composites, Oxford: Elsevier, 1990.

    Google Scholar 

  13. Wagih, A., Int. J. Adv. Eng. Sci., 2014, vol. 4, no. 2, pp. 1–7.

    Google Scholar 

  14. Razavi Tousi, S.S., Yazdani Rad, R., Salahi, E., Mobasherpour, I., et al., Powder Technol., 2009, vol. 192, pp. 346–351.

    Google Scholar 

  15. Fogagnolo, J.B., Robert, M.H., Ruiz-Navas, E.M., and Torralba, J.M. J. Mater. Sci., 2004, vol. 39, pp. 127–132.

    Article  Google Scholar 

  16. Fogagnolo, J.B., Velasco, F., Robert, M.H., and Torralba, J.M., Mater. Sci. Eng., A, 2003, vol. 342, pp. 131–143.

    Article  Google Scholar 

  17. Hesabi, Z.R., Simchi, A., and Reihani, S.M.S., Mater. Sci. Eng., A, 2006, vol. 428, pp. 159–168.

    Article  Google Scholar 

  18. Mahboob, H., Sajjadi, S.A., and Zebarjad, S.M., The Int. Conf. on MEMS and Nanotechnology, ICMN’08, May 13–15, 2008, Kuala Lumpur, 2008, pp. 240–245. http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.863.4269&rep=rep1&type=pdf.

    Google Scholar 

  19. Hao, S., Xie, J., Wang, A., and Fang, M., Mater. Trans., 2014, vol. 55, no. 5, pp. 750–753.

    Article  Google Scholar 

  20. Ram Prabhu, T., Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 20–31.

    Article  Google Scholar 

  21. Jayaraman, K., Mulla, I., Chakravarthy, S.R., and Sarathi, R., 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2010, pp. 1–7.

    Google Scholar 

  22. Taherzadeh Mousavian, R., Azari Khosroshahi, R., Yazdani, S., Brabazon, D., et al., Mater. Des., 2016, vol. 89, pp. 58–70.

    Google Scholar 

  23. Hassani, A., Bagherpour, E., and Qods, F., J. Alloys Compd., 2014, vol. 591, pp. 132–142.

    Article  Google Scholar 

  24. De Jonghe, L.C. and Rahaman, M.N., in Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, New York: Elsevier, 2003, vol. 1, ch. 4, pp. 187–264.

    Google Scholar 

  25. Mitrica, D. and Moldovan, P. U.P.B., Sci. Bull.-Politeh. Univ. Bucharest, Ser. B, 2012, vol. 74, no. 4, pp. 186–194.

    Google Scholar 

  26. Anandkumar, R., Almeida, A., Colaco, R., Vilar, R., et al., Surf. Coat. Technol., 2007, vol. 201, pp. 9497–9505.

    Article  Google Scholar 

  27. Abdel-Aal, H.A., Wear, 2003, vol. 254, pp. 884–900.

    Article  Google Scholar 

  28. Vogelsang, M., Arsenault, R.J., and Fisher, R.M., Metall. Trans. A, 1986, vol. 17, pp. 379–389.

    Article  Google Scholar 

  29. Tham, L.M. and Cheng, L., Acta Mater., 2001, vol. 49, pp. 3243–3253.

    Article  Google Scholar 

  30. Segurado, J., González, C., and Lorca, J., Acta Mater., 2003, vol. 51, pp. 2355–2369.

    Article  Google Scholar 

  31. Canakci, A. and Varol, T., Powder Technol., 2014, vol. 268, pp. 72–79.

    Article  Google Scholar 

  32. Kaur, K., Anant, R., and Pandey, O.P., Tribol. Lett., 2011, vol. 44, pp. 41–58.

    Article  Google Scholar 

  33. Rice, S.L., Nowotny, H., and Wayne, S.F., Wear, 1981, vol. 74, pp. 131–142.

    Article  Google Scholar 

  34. Suh Nam Pyo, Wear, 1977, vol. 44, no. 1, pp. 1–16.

    Article  Google Scholar 

  35. Jahanmir, S. and Suh, N.P., Wear, 1977, vol. 44, pp. 17–38.

    Article  Google Scholar 

  36. Sethuramiah, A. and Kumar, R., in Modeling of Chemical Wear, Amsterdam: Elsevier, 2016, ch. 3, pp. 41–68.

    Google Scholar 

  37. Rajmohan, T., Palanikumar, K., and Ranganathan, S., Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2509–2517.

    Article  Google Scholar 

  38. Haghshenas, M., in Reference Module in Materials Science and Materials Engineering, Amsterdam: Elsevier, 2016, pp. 1–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Abouei.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani, E., Abouei, V., Shajari, Y. et al. Investigation on Microstructure, Wear Behavior and Microhardness of Al−Si/SiC Nanocomposite. Surf. Engin. Appl.Electrochem. 54, 350–358 (2018). https://doi.org/10.3103/S1068375518040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375518040038

Keywords

Navigation