Skip to main content
Log in

Mixed Oxide Films Formed on Titanium Alloy by Plasma Electrolytic Oxidation

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The structure and the properties of oxide films formed on titanium in the diphosphate based electrolytes by plasma electrolytic oxidation in the spark-discharge regime at application of inter-electrode voltage 100 to 130 V have been studied. A possibility to obtain oxide layers containing alloying elements by the modification of the composition of electrolytes has been stated. It was found that the chemical and phase composition as well as the topography, the microstructure and the grain size of the formed layers depend on the electrolyte composition, applied current density and inter-electrode voltage. The effect of the chemical composition of the formed mixed oxide films on the corrosion resistance and catalytic activity has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagheri, S., Muhd Julkapli, N., and Bee Abd Hamid, S., Sci. World J., 2014, pp. 1–21. doi 10.1155/2014/727496

    Google Scholar 

  2. Anpo, M. and Kamat, P.V., Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials, Dordrecht: Springer-Verlag, 2010.

    Book  Google Scholar 

  3. Rudnev, V.S., Morozova, V.P., Kaidalova, T.A., and Nedozorov, P.M., Russ. J. Inorg. Chem., 2007, vol. 52, no. 9, pp. 1350–1354. doi 10.1134/s0036023607090069

    Article  Google Scholar 

  4. Lukiyanchuk, I.V., Rudnev, V.S., and Tyrina, L.M., Surf. Coat. Technol., 2016, vol. 307, 1183–1193. doi 10.1016/j.surfcoat.2016.06.076

    Article  Google Scholar 

  5. Lukiyanchuk, I.V., Chernykh, I.V., Rudnev, V.S., Ustinov, A.Yu., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, pp. 209–217. doi 10.1134/S2070205114020105

    Article  Google Scholar 

  6. Shaogui, Y., Xie, Q., Xinyong, L., and Yazi, L., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 2, pp. 659–664. doi 10.1039/B308336E

    Article  Google Scholar 

  7. Bykanova, V.V., Sakhnenko, N.D., and Ved’, M.V., Surf. Eng. Appl. Electrochem., 2015, vol. 51, no. 3, pp. 276–282. doi 10.3103/S1068375515030047

    Article  Google Scholar 

  8. Sakhnenko, N.D., Ved, M.V., and Bykanova, V.V., Funct. Mater., 2014, vol. 21, no. 4, pp. 492–497. doi 10.15407/fm21.04.492

    Article  Google Scholar 

  9. Glushkova, M., Bairachna, T., Ved’, M., and Sakhnenko, M., MRS Proc., 2013, vol. 1491, pp. 18–23. doi 10.1557/opl.2012.167210.1557/opl.2012.1672

    Article  Google Scholar 

  10. Sakhnenko, N.D., Ved, M.V., Vestfrid, Yu.V., and Stepanova, I.I., Russ. J. Appl. Chem., 1996, vol. 69, no. 9, pp. 1346–1350.

    Google Scholar 

  11. Rudnev, V.S., Lukiyanchuk, I.V., Malisyeva, M.S., Morozova, V.P., et al., Appl. Surf. Sci., 2017, vol. 422, pp. 1007–1014. doi 10.1016/j.apsusc.2017.06.071

    Article  Google Scholar 

  12. Karakurkchi, A., Sakhnenko, M., Ved, M., Galak, A., et al., East.-Eur. J. Enterp. Technol., 2017, vol. 5, no. 10 (89), pp. 12–18. doi 10.15587/1729-4061.2017.109885

    Article  Google Scholar 

  13. Lebukhova, N.V., Rudnev, V.S., Kirichenko, E.A., Chigrin, P.G., et al., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 6, pp. 1024–1030. doi 10.1134/S2070205116060149

    Article  Google Scholar 

  14. Zielinski, A., Sobieszczyk, S., Seramak, T., Serbinski, W., et al., Adv. Mater. Sci., 2010, vol. 10, no. 4, pp. 21–31. doi 10.2478/v10077-010-0013-1

    Google Scholar 

  15. Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y. Dent. Mater., 2007, vol. 23, no. 7, pp. 844–854. doi 10.1016/j.dental.2006.06.025

    Article  Google Scholar 

  16. Sakhnenko, N.D., Ved’, M.V., Androshchuk, D.S., and Korniy, S.A., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 2, pp. 145–151. doi 10.3103/S1068375516020113

    Article  Google Scholar 

  17. Lunarska, E., Cherniayeva, O., Ved, M., Sakhnenko, M., Ochr. Koroz., 2007, no. 11, pp. 265–269.

    Google Scholar 

  18. Czarnowska, E., Zajaczkowska, A., Major, L., Morgiel, J., et al., Adv. Mater. Sci., 2007, vol. 7, no. 3, pp. 5–11.

    Google Scholar 

  19. Sobieszczyk, S., Adv. Mater. Sci., 2009, vol. 9, no. 2, pp. 25–41. doi 10.2478/v10077-009-0008-y

    Google Scholar 

  20. Krasicka-Cydzik, E., Corros. Sci., 2004, vol. 46, no. 10, pp. 2487–2502. doi 10.1016/j.corsci.2004.01.012

    Article  Google Scholar 

  21. Das, K., Bose, S., and Bandyopadhyay, A., Acta Biomater., 2007, vol. 3, no. 4, pp. 573–585. doi 10.1016/j.actbio.2006.12.003

    Article  Google Scholar 

  22. Chang, E. and Lee, T.M., Biomaterials, 2002, vol. 23, no. 14, pp. 2917–2925. doi 10.1016/S0142-9612(01)00420-3

    Article  Google Scholar 

  23. Yang, B., Uchida, M., Kim, H.-M., Zhang, H., and Kokubo, T., Biomaterials, 2004, vol. 25, no. 6, pp. 1003–1010. doi 10.1016/S0142-9612(03)00626-4

    Article  Google Scholar 

  24. Zhang, Q. and Leng, Y., Biomaterials, 2005, vol. 26, no. 18, pp. 3853–3859. doi 10.1016/j.biomaterials. 2004.09.057

    Article  Google Scholar 

  25. Chrzanowski, W., Szewczenko, J., Tyrlik-Held, J., Marciniak, J., et al., J. Mater. Process. Techol., 2005, vols. 162–163, pp. 163–168. doi 10.1016/j.jmatprotec. 2005.02.203

    Article  Google Scholar 

  26. Göttlicher, M., Rohnke, M., Helth, A., Leichtweiß, T., et al., Acta Biomater., 2013, vol. 9, no. 11, pp. 9201–9210. doi 10.1016/j.actbio.2013.07.015

    Article  Google Scholar 

  27. Gupta, P., Tenhundfeld, G., Daigle, E.O., and Ryabkov, D., Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8746–8760. doi 10.1016/j.surfcoat.2006.11.023

    Article  Google Scholar 

  28. Rokosz, K., Hryniewicz, T., Raaen, S., Chapon, P., et al., Surf. Interface Anal., 2017, vol. 49, pp. 303–315. doi 10.1002/sia.6136

    Article  Google Scholar 

  29. Sakhnenko, N., Ved, M., Karakurkchi, A., Galak, A. East.-Eur. J. Enterp. Technol., 2016, vol. 3, no. 5, pp. 37–43. doi 10.15587/1729-4061.2016.69390

    Article  Google Scholar 

  30. Ved’, M.V., Karakurkchi, A.V., Sakhnenko, N.D., and Gorohivskiy, A.S., Phys. Technol. Surf., 2017, vol. 8, no. 1, pp. 73–79. doi 10.15407/hftp08.01.073

    Google Scholar 

  31. Sakhnenko, N.D., Ved, M.V., and Karakurkchi, A.V., in Proc. 4th Int. Conf. on Nanotechnology and Nanomaterials (NANO2016) “Nanophysics, Nanomaterials, Interface Studies, and Applications,” Lviv, Ukraine, August 24–27, 2016, New York: Springer-Verlag, 2017, pp. 507–531. doi 10.1007/978-3-319-56422-7_3810.1007/978-3-319-56422-7_38

    Google Scholar 

  32. Ved’, M.V., Sakhnenko, N.D., Bogoyavlenska, O.V., and Nenastina, T.O., Mater. Sci., 2008, vol. 44, no. 1, pp. 79–86. doi 10.1007/s11003-008-9046-6

    Article  Google Scholar 

  33. Vasilyeva, M.S., Rudnev, V.S., Ustinov, A.Yu., Korotenko, I.A., et al., Appl. Surf. Sci., 2010, vol. 257, no. 4, pp. 1239–1246. doi 10.1016/j.apsusc.2010.08.031

    Article  Google Scholar 

  34. Snytnikov, P.V., Belyaev, V.D., and Sobyanin, V.A., Kinet. Catal., 2007, vol. 48, no. 1, pp. 93–102. doi 10.1134/s0023158407010132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sakhnenko.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhnenko, N., Ved, M., Mayba, M. et al. Mixed Oxide Films Formed on Titanium Alloy by Plasma Electrolytic Oxidation. Surf. Engin. Appl.Electrochem. 54, 203–209 (2018). https://doi.org/10.3103/S1068375518020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375518020102

Keywords

Navigation