Skip to main content
Log in

Microarc oxidation in slurry electrolytes: A review

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The experience gathered from the use of plasma electrolytic methods in the context of improving the performance of valve group metals is summarized. Emphasis is placed on the formation of coatings by microarc oxidation (MAO) in slurry electrolytes containing powders with different degree of dispersion (a few nanometers to a few tens of microns) and nature (oxides, carbides, nitrides, borides, graphite, etc.). A phenomenological model of the mechanism of formation of MAO coatings in slurry electrolytes is proposed; characteristics of the electrolytes and the coatings are discussed. The results of our studies of the composition of MAO coatings carried out by nuclear backscattering (NBS) spectrum simulation are described. A significant improvement in the properties of MAO coatings formed in slurry electrolytes is registered. It is concluded that this modification can considerably extend the range of application of the MAO method not only in conventional fields of mechanical and instrument engineering but also in aerospace engineering, medicine, biology, and living systems technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suminov, I.V., Belkin, P.N., Apelfeld, A.V., Lyudin, V.B., Krit, B.L., and Borisov, A.M., Plazmenno-elektroliticheskoe modifitsirovanie poverkhnosti metallov i splavov (Plasma Electrolytic Surface Modification of Metals and Alloys), Moscow: Tekhnosfera, 2011, vol. 2.

  2. Malyshev, V.N. and Zorin, K.M., Features of microarc oxidation coatings formation technology in slurry electrolytes, Appl. Surf. Sci., 2007, vol. 254, pp. 1511–1516.

    Article  Google Scholar 

  3. Matykina, E., Arrabal, R., Monfort, F., Skeldon, P., and Thompson, G.E., Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Appl. Surf. Sci., 2007, vol. 255, pp. 2830–2839.

    Article  Google Scholar 

  4. Zheltukhin, A.V., Zheltukhin, R.V., Vinogradov, A.V., and Apelfeld, A.V., A study of the characteristics of MAO coatings on a V95 aluminum alloy formed in an alkaline silicate electrolyte with a zirconia nanoparticle additive, Nauchn. Ved. Belgorod. Gos. Univ., Ser. Mat. Fiz., 2011, vol. 5, no. 22, pp. 177–179.

    Google Scholar 

  5. Lv, G.-H., Chen, H., Gu, W.-C., Feng, W.-R., Li, L., Niu, E.-W., Zhang, X.-H., and Yang, S.-Z., Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of alumina PEO coatings, Curr. Appl. Phys., 2009, vol. 9, pp. 324–328.

    Article  Google Scholar 

  6. Wu, X., Qin, W., Guo, Y., and Xie, Z., Self-lubricative coating grown by micro-plasma oxidation on aluminum alloys in the solution of aluminate–graphite, Appl. Surf. Sci., 2008, vol. 254, pp. 6395–6599.

    Article  Google Scholar 

  7. Lee, K.M., Ko, Y.G., and Shin, D.H., Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties, Curr. Appl. Phys., 2011, vol. 11, pp. S55–S59.

    Article  Google Scholar 

  8. Apelfeld, A.V., Zheltukhin, A.V., and Savushkina, S.V., A study of coatings on an aluminum alloy formed by microarc oxidation in an alkaline silicate electrolyte with ultrafine diamond additives, in Novye materialy i tekhnologii. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii (Proc. All-Russia Sci.-Tech. Conf. on New Materials and Technologies), Moscow: Mosk. Aviats. Tekhnol. Inst., 2010, vol. 2, p. 115.

    Google Scholar 

  9. Wu, X., Xie, F., Hu, Z., and Wang, L., Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1032–1036.

    Article  Google Scholar 

  10. Wang, Y.M., Jiang, B.L., Lei, T.Q., and Guo, L.X., Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose, Appl. Surf. Sci., 2005, vol. 246, pp. 214–221.

    Article  Google Scholar 

  11. Aliofkhazraei, M. and Sabour Rouhaghdam, A., Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle, Appl. Surf. Sci., 2012, vol. 258, pp. 2093–2097.

    Article  Google Scholar 

  12. Arrabal, R., Matykina, E., Viejo, F., Skeldon, P., Thompson, G.E., and Merino, M.C., AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles, Appl. Surf. Sci., 2008, vol. 254, pp. 6937–6942.

    Article  Google Scholar 

  13. Vladimirov, B.V. and Savushkina, S.V., A study of MAO coatings on a MA2-1 magnesium alloy synthesized in an alkaline silicate electrolyte with an ultrafine zirconia additive, in XXXVII Gagarinskie chteniya. Nauchnye trudy Mezhdunarodnoi molodezhnoi nauchnoi konferentsii (XXXVII Readings Dedicated to the Memory of Yu.A. Gagarin: Proc. Int. Youth Sci. Conf.), Moscow: Mosk. Aviats. Tekhnol. Inst., 2011, vol. 3, pp. 118–120.

    Google Scholar 

  14. Apelfeld, A.V., A technique for measuring the through porosity of dielectric coatings prepared by microarc oxidation, in Trudy 3-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Proc. 3rd Int. Sci.-Tech. Conf.), Moscow: Vseross. Nauchno-Tekh. Inst. Elektrif. Sel’sk. Khoz., 2003, part 2, pp. 325–329.

    Google Scholar 

  15. Necula, B.S., Fratila-Apachitei, L.E., Berkani, A., Apachitei, I., and Duszczyk, J., Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications, J. Mater. Sci.: Mater. Med., 2009, vol. 20, pp. 339–345.

    Google Scholar 

  16. Sreekanth, D. and Rameshbabu, N., Development and characterization of MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma electrolytic oxidation coupled with electrophoretic deposition, Mater. Lett., 2012, vol. 68, pp. 439–442.

    Article  Google Scholar 

  17. Laleh, M., Sabour Rouhaghdam, A., Shahrabi, T., and Shanghi, A., Effect of alumina sol addition to microarc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D, J. Alloys Compd., 2010, vol. 496, pp. 548–552.

    Article  Google Scholar 

  18. Xu, X., Lu, P., Guo, M., and Fang, M., Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release, Appl. Surf. Sci., 2010, vol. 256, pp. 2367–2371.

    Article  Google Scholar 

  19. Shi, P., Ng, W.F., Wong, M.H., and Cheng, F.T., Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing, J. Alloys Compd., 2009, vol. 469, pp. 286–292.

    Article  Google Scholar 

  20. Paital, S.R. and Dahotre, N.B., Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies, Mater. Sci. Eng. R, 2009, vol. 66, pp. 1–70.

    Article  Google Scholar 

  21. Liua, F., Xu, J.L., Yu, D.Z., Wang, F.P., and Zhao, L.C., Effects of cathodic voltages on the structure and properties of ceramic coatings formed on NiTi alloy by micro-arc oxidation, Mater. Chem. Phys., 2010, vol. 121, pp. 172–177.

    Article  Google Scholar 

  22. Avilkina, V.S., Borisov, A.M., Vladimirov, B.V., Petukhov, V.P., and Chernykh, P.N., Measurement of the elemental composition of carbon and composite ceramic materials using PIXE and RBS methods, Inorg. Mater. Appl. Res., 2012, vol. 3, no. 3, pp. 239–242.

    Article  Google Scholar 

  23. Betsofen, S.Ya., Borisov, A.M., Vladimirov, B.V., Vostrikov, V.G., Romanovskii, E.A., Savushkina, S.V., Sorokin, V.A., Tkachenko, N.V., Frantskevich, V.P., and Apelfeld, A.V., Preparation of nanocomposite ceramic coatings on a zirconium alloy by microarc oxidation, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokr., 2012, no. 2, pp. 45–48.

    Google Scholar 

  24. Apelfeld, A.V., Borisov, A.M., Krit, B.L., Ludin, V.B., Polyansky, M.N., Romanovsky, E.A., Savushkina, S.V., Suminov, I.V., Tkachenko, N.V., Vinogradov, A.V., and Vostrikov, V.G., The study of plasma electrolytic oxidation coatings on Zr and Zr–1% Nb alloy at thermal cycling, Surf. Coat. Technol., 2015, vol. 269, pp. 279–285.

    Article  Google Scholar 

  25. Romanovskii, E.A., Serkov, M.V., Borisov, A.M., Michurina, V.P., Smirnova, O.A., Suminov, I.V., and Apelfeld, A.V., Application of nuclear backscattering spectrometry of 5–8 MeV protons for the study of protective oxide coatings, Prikl. Fiz., 2006, no. 4, pp. 85–88.

    Google Scholar 

  26. Wang, Y., Jiang, Z., and Yao, Z., Formation of titania composite coatings on carbon steel by plasma electrolytic oxidation, Appl. Surf. Sci., 2010, vol. 256, pp. 5818–5823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Borisov.

Additional information

Original Russian Text © A.M. Borisov, B.L. Krit, V.B. Lyudin, N.V. Morozova, I.V. Suminov, A.V. Apelfeld, 2016, published in Elektronnaya Obrabotka Materialov, 2016, No. 1, pp. 50–77.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.M., Krit, B.L., Lyudin, V.B. et al. Microarc oxidation in slurry electrolytes: A review. Surf. Engin. Appl.Electrochem. 52, 50–78 (2016). https://doi.org/10.3103/S106837551601004X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837551601004X

Keywords

Navigation