Skip to main content
Log in

Galvanostatic characteristics of natural pyrite in cycling for DMC-LiAn electrolytes

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The specific characteristics of natural pyrite (FeS2) are investigated using a galvanostatic cycling method. The investigation is carried out for electrolytes consisting of dimethylcarbonate (DMC) and a lithium salt (LiBF4, LiClO4, or LiN(CF3SO2)2). It is shown that the specific capacitance of FeS2 and its stability during cycling depend on the concentration and the nature of a lithium salt anion. The greatest efficiency of the galvanostatic cycling of FeS2 is achieved for the DMC-LiClO4 and DMC-LiN(CF3SO2)2 electrolytes in salt concentrations in the range of 0.1–0.2 molar fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fong, R., Dahn, J.R., and Jones C.H.W., Electrochemistry of pyrite-based cathodes for ambient temperature lithium batteries, J. Electrochem. Soc., 1989, vol. 136, no. 11, pp. 3206–3210.

    Article  Google Scholar 

  2. Montoro, L.A. and Rosolen, J.M., Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery, Solid State Ionics, 2003, vol. 159, pp. 233–240.

    Article  Google Scholar 

  3. Shao-Horn, Y., Osmialowski, S., and Horn, Q.C., Reinvestigation of lithium reaction mechanisms in FeS2 pyrite at ambient temperature, J. Electrochem. Soc., 2002, vol. 149, no. 12, pp. A1547–A1555.

    Article  Google Scholar 

  4. Takada, K., Kitami, Y., Inada, T., Kajiyama, A., Kouguchi, M., Kondo, S., Watanabe, M., and Tabuchi, M., Electrochemical reduction Li2FeS2 in solid electrolyte, J. Electrochem. Soc., 2001, vol. 148, no.10, pp. A1085–A1090.

    Article  Google Scholar 

  5. Polishchuk, Yu.V., Maksyuta, I.M., Shembel’, E.M., and Reizner, D., Iron pyrite as a non-convectional material for a positive lithium electrode, Elektrokhim. Energ., 2008, vol. 8, no. 1, pp. 12–19.

    Google Scholar 

  6. Choi, J.-W., Cheruvally, G., Ahn, H.-J., Kim, K.-W., and Ahn, J.-H., Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode, J. Power Sources, 2006, vol. 163, pp. 158–165.

    Article  Google Scholar 

  7. Apostolova, R.D., Kolomoets, O.V., and Shembel’, E.M., Electrolytic pyrites in a lithium battery with polyvinylchloride-based electrolyte, Elektrokhim. Energ., 2008, vol. 8, no. 4, pp. 237–240.

    Google Scholar 

  8. Choi, J.-W., Cheruvally, G., Shin, Y.-J., Ahn, H.J., Kim, K.W., and Ahn, J.H., Effect of various lithium salts in TEGDME based electrolyte for Li/pyrite battery, Solid State Phenom., 2007, vols. 124–126, pp. 971–974.

    Article  Google Scholar 

  9. Peled, E., Golodnitsky, D., Ardel, G., Lang, J., and Lavi, Y., Development and characterization of bipolar lithium composite polymer electrolyte (CPE)–FeS2 battery for applications in electric vehicles, J. Power Sources, 1995, vol. 54, pp. 496–500.

    Article  Google Scholar 

  10. Peled, E., Golodnitsky, D., Strauss, E., Lang, J., and Lavi, Y., Li/CPE/FeS2 rechargeable battery, Electrochim. Acta, 1998, vol. 43, nos. 10–11, pp. 1593–1599.

    Article  Google Scholar 

  11. Golodnitsky, D. and Peled, E., Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries, Electrochim. Acta, 1999, vol.45, pp. 335–350.

    Article  Google Scholar 

  12. Strauss, E., Golodnitsky, D., and Peled, E., Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery, Electrochim. Acta, 2000, vol. 45, pp. 1519–1525.

    Article  Google Scholar 

  13. Ardel, G., Golodnitsky, D., Freedman, K., Peled, E., Appetecchi, G.B., Romagnoli, P., and Scrosati, B., Rechargeable lithium/hybrid-electrolyte/pyrite battery, J. Power Sources, 2002, vol. 110, pp. 152–162.

    Article  Google Scholar 

  14. Strauss, E., Golodnitsky, D., and Peled, E., Elucidation of the charge–discharge mechanism of lithium/polymer electrolyte/pyrite batteries, J. Solid State Electrochem., 2002, vol. 6, pp. 468–474.

    Article  Google Scholar 

  15. Strauss, E., Golodnitsky, D., Freedman, K., Milner, A., and Peled, E., To the electrochemistry of pyrite in Li/solid composite–polymer–electrolyte battery, J. Power Sources, 2003, vol. 115, pp. 323–331.

    Article  Google Scholar 

  16. Prisyazhnyi, V.D., Globa, N.I., and Sirosh, V.A., Composition of salt–solvation electrolytes and specific capacity of natural pyrite, Ukr. Khim. Zh., 2013, vol. 79, no. 9, pp. 31–37.

    Google Scholar 

  17. Grondin, J., Talaga, D., Lassegues, J.-C., and Henderson, W.A., Raman study of crystalline solvates between glymes CH3(OCh2Ch2)nOCH3 (n = 1, 2 and 3) and LiClO4, Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 938–944.

    Article  Google Scholar 

  18. Grondin, J., Lassegues, J.-C., Chami, M., Servant, L., Talaga, D., and Henderson, W.A., Raman study of tetraglyme–LiClO4 solvate structures, Phys. Chem. Chem. Phys., 2004, vol. 6, pp. 4260–4267.

    Article  Google Scholar 

  19. Foley, M.P., Seo, D.M., Boyle, P.D., Henderson, W.A., De Long, H.C., and Trulove, P.C., Phase behavior and solvation of lithium triflate in γ-butyrolactone, ECS Transact., 2011, vol. 35, no. 29, pp. 3–8.

    Article  Google Scholar 

  20. Foley, M.P., Seo, D.M., Worosz, C.J., Boyle, P.D., Henderson, W.A., De Long, H.C., and Trulove, P.C., Phase behavior and solvation of lithium triflate in ethylene carbonate ECS Transact., 2012, vol. 41, no. 27, pp. 99–105.

    Article  Google Scholar 

  21. Seo, D.M., Borodin, O., Han, S.-D., Ly, Q., Boyle, P.D., and Henderson, W.A., Electrolyte solvation and ionic association. I. Acetonitrile–lithium salt mixtures: intermediate and highly associated salts, J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. A553–A565.

    Article  Google Scholar 

  22. Seo, D.M., Borodin, O., Han, S.-D., Boyle, P.D., and Henderson, W.A., Electrolyte solvation and ionic association. II. Acetonitrile–lithium salt mixtures: highly dissociated salts, J. Electrochem. Soc., 2012, vol. 159, no. 9, pp. A1489–A1500.

    Article  Google Scholar 

  23. Yamaki, J.-I., Liquid electrolytes, in Advances in Lithium-Ion Batteries, New York: Kluwer Academic/Plenum Publishers, 2002, pp. 155–183.

    Chapter  Google Scholar 

  24. Ehrlich, G.M., Lithium-ion batteries, in Handbook of Batteries, New York: McGraw-Hill, 2002, pp. 35.1–35.94.

    Google Scholar 

  25. Caiola, A., Guy, H., and Sohm, J.C., Thermodynamic study of lithium-electrode generators (positive electrode materials for high energy density batteries with Li negative electrode, calculating discharge emf for various salts) Entropie, 1971, vol 40, pp. 24–34.

    Google Scholar 

  26. Montoro, L.A., Rosolen, J.M., Shin, J.H., and Passerini, S., Investigations of natural pyrite in solvent-free polymer electrolyte, lithium metal batteries. Electrochim. Acta, 2004, vol. 49, pp. 3419–3427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Globa.

Additional information

Original Russian Text © N.I. Globa, V.A. Sirosh, V.D. Prisyazhniy, 2015, published in Elektronnaya Obrabotka Materialov, 2015, No. 5, pp. 72–79.

Deceased.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Globa, N.I., Sirosh, V.A. & Prisyazhniy, V.D. Galvanostatic characteristics of natural pyrite in cycling for DMC-LiAn electrolytes. Surf. Engin. Appl.Electrochem. 51, 483–490 (2015). https://doi.org/10.3103/S1068375515050038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375515050038

Keywords

Navigation