Skip to main content
Log in

Tensoresistance as an information source on mobility anisotropy parameter K = μ in multivalley semiconductors and certain new possibilities of deformation metrology

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mobility anisotropy of majority carriers in multivalley lightly doped n-Ge and n-Si single crystals is investigated by the tensoresistance method at T = 77.4 K, and values of the mobility anisotropy parameter are found under mentioned conditions: K = μ = 15.6 in n-Ge and K = 5.89 in n-Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedosov, A.V., Lun’ov, S.V., and Fedosov, S.A., Influence of uniaxial deformation on filling the level associated with A-center in n-Si crystals. Ukr. Fiz. Zh., 2011, vol. 56, no. 1, pp. 70–74.

    Google Scholar 

  2. Fedosov, A.V., Lun’ov, S.V., Korovits’kii, A.M., Fedosov, S.A., and Misiuk S.Ya. Influence of uniaxial elastic deformation of the location of deep energy levels in n-Si〈Ge〉 single crystals. Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2009, no. 18, pp. 8–11.

    Google Scholar 

  3. Fedosov, A.V., Zakharchuk, D.A., Fedosov, S.A., Koval’, Yu.V., Lun’ov, S.V., and Panasiuk, L.I., Influence of deep energy levels on electrical properties of n-Si single crystals, Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2008, no. 9, pp. 54–57.

    Google Scholar 

  4. Fedosov, S.A., Khvyshchun, M.V., and Shynkaruk, S.V., Influence of impurity concentration on the change of location of deep level E c — 0.2 eV under uniaxial elastic deformation in n-Ga〈Au〉, Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2010, no. 29, pp. 37–43.

    Google Scholar 

  5. Semeniuk, A.K., Radiatsiini efekty v bagatodolynnykh napivprovidnikakh (Radiation Effects in Multivalley Semiconductors), Lutsk: Nadstyr’ia, 2001.

    Google Scholar 

  6. Fedosov, S.A., Lun’ov, S.V., and Zakharchuk, D.A., Panasiuk, L.I., and Koval’, Yu.V., Influence of uniaxial elastic deformation on the location and degree of filling deep level E c — 0.2 eV in n-Ge〈Au〉 single crystals, Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2011, no. 16, 39–45.

    Google Scholar 

  7. Barans’kii, P.I., Fedosov, A.V., and Gaidar, G.P., Neodnoridnosti napivprovidnykiv i aktual’ni zadachi mizhdefektnoi vzaemodii v radiatsiinii fizytsi i nanotekhnologii (Inhomogeneities of Semiconductors and Topical Problems of Interdefect Interaction in Radiation Physics and Nanotechnology), Kyiv-Lutsk: Lutsk State Univ., 2007.

    Google Scholar 

  8. Fedosov, A.V., Yashchinskiy, L.V., Fedosov, S.A., Zakharchuk, D.A., and Khvishchun, M.V., Influence of layered periodic inhomogeneities on piezoresistance of γ-irradiated n-Si and n-Ge single crystals. In: Materialy Mezhdunarodnoy konferentsii “Fizika elektronnykh materialov” (FIEM’02), 1–4 October 2002, Kaluga, Rossiya (Proc. Int. Conf. “Physics of Electron Materials”), Nikiforov K. G., Ed., Kaluga: Kaluga State Ped. Univ., 2002, pp. 148–149.

    Google Scholar 

  9. Fedosov, A.V., Yashchinskiy, L.V., Fedosov, S.A., Zakharchuk, D.A., and Khvishchun, N.V., Influence of layered periodic inhomogeneities on piezoresistance of γ-irradiated n-Si and n-Ge single crystals, Naukoemk. Tekhnol., 2004, vol. 5, no. 6, pp. 27–31.

    Google Scholar 

  10. Fedosov, A.V., Zakharchuk, D.A., Fedosov, S.A., and Yashchins’kii, L.V., Features of piezoresistance of Γ-irradiated n-Ge and n-Si single crystals during bleaching, Abstracts of Papers 1-oi Ukrains’koi naukovoi konferentsii z fizyky napivprovidnykiv UNKFN-1 (z mizhnarodnoiu uchastiu), 10-14 September 2002, Odesa, Ukrayina (1st Ukrainian Sci. Conf. on Semicond. Phys. UNKFN-1 (with international participation), Odesa: Astroprint, 2002, p. 87.

    Google Scholar 

  11. Fedosov, A.V., Zakharchuk, D.A., Fedosov, S.A., et al., Influence of γ-irradiation of piezoresistance and carrier mobility in n-Ge in the presence of layered inhomogeneities, Trudy XVI Mezhdunar. soveshchaniya “Radiatsionnaya fizika tverdogo tela”, 3–8 July 2006, Sevastopol, Ukraina (Proc. XVI Int. Symp. “Radiation Physics of Solids”), Bondarenko, G.G, Ed., Moscow: State Scientific Institution “Res. Inst. Promising Mater. Technol.,” 2006, pp. 186–191.

    Google Scholar 

  12. Fedosov, A.V., Zakharchuk, D.A., Fedosov, S.A., and Semenchenko, R.N., Influence of illumination on parameter change of anisotropy of mobility in n-Ge monocrystals with heterogeneous distribution of doping impurity, Photoelectronics, 2006, no. 15, pp. 105–107.

    Google Scholar 

  13. Bir, G.L. and Pikus, G.E., Simmetriya i deformatsionnye effekty v poluprovodnikakh (Symmetry and Deformation Effects in Semiconductors), Moscow: Nauka, 1972.

    Google Scholar 

  14. Lun’ov, S.V., Determination of shear deformation potential constant in n-Si under the presence of radiation defects, Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2009, no. 18, pp. 12–15.

    Google Scholar 

  15. Fedosov, A.V., Lun’ov, S.V., Zakharchuk, D.A., Fedosov, S.A., and Panasiuk, L.I., Determination of shear deformation potential constants in γ-irradiated germanium and silicon, Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2009, no. 18, pp. 3–7.

    Google Scholar 

  16. Fedosov, A.V., Lun’ov, S.V., and Fedosov, S.A., Determination of deformation potential constant Ξd in n-Ge by the piezoresistance method, Nauk. Visn. Volyn. Nats. Univ. im. Lesi Ukrainky, Fiz. Nauky, 2010.

    Google Scholar 

  17. Lun’ov, S.V. and Fedosov, S.A., Determination of deformation potential constant Ξd in n-Si by the piezoresistance method, Zh. Fiz. Doslidzh., 2011, vol. 15, no. 2, pp. 2705-1–2705-4.

    Google Scholar 

  18. Lun’ov, S.V., Panasiuk, L., and Fedosov, S.A., Constants of deformation potential Ξd and Ξd for n-Si determined by the tensoresistive effect method, Ukr. Fiz. Zh., 2012, vol. 57, no. 6, pp. 637–642.

    Google Scholar 

  19. Gorin, A.E., Gromova, G.V., Ermakov, V.M., Kogutiuk, P.P., Kolomoets’, V.V., Nazarchuk, P.F., Panasiuk, L.I., and Fedosov, S.A., Silicon p-MOS and n-MOS transistors with single-axis strained channels in nanotechnology of electron devices, Ukr. Fiz. Zh., 2011, vol. 56, no. 9, pp. 920–925.

    Google Scholar 

  20. Thompson, S., Anand, N., Armstrong, M., Auth, C., Arcot, B., Alavi, M., Bai, P., Bielefeld, J., Bigwood, R., Brandenburg, J., Buehler, M., Cea, S., Chikarmane, V., Choi, C., Frankovic, R., Ghani, T., Glass, G., Han, W., Hoffmann, T., Hussein, M., Jacob, P., Jain, A., Jan, C., Joshi, S., Kenyon, C., Klaus, J., Klopcic, S., Luce, J., Ma, Z., Mcintyre, B., Mistry, K., Murthy, A., Nguyen, P., Pearson, H., Sandford, T., Schweinfurth, R., Shaheed, R., Sivakumar, S., Taylor, M., Tufts, B., Wallace, C., Wang, P., Weber, C., and Bohr, M., A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell, Int. Electron Devices Meeting. 8–11 December 2002. IEDM’02, 2002, pp. 61–64.

    Google Scholar 

  21. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Johnson, K., Kenyon, C., Klaus, J., McIntyre, B., Mistry, K., Murthy, A., Sandford, J., Silberstein, M., Sivakumar, S., Smith, P., Zawadzki, K., Thompson, S., and Bohr, M., A 90 nm high volume manufacturing logic technology featuring novel 45 gate length strained silicon CMOS transistors, IEEE Int. Electron Devices Meeting. 8–11 December 2003. IEDM’03 Technical Digest, 2003, pp. 11.6.1–11.6.3.

    Google Scholar 

  22. Urban, C., Sandow, C., Zhao, Q.T., and Mantl, S., High performance Schottky barrier MOSFETs on UTB SOI, Proc. 10th Int. Conf. Ultimate Integration of Silicon (ULIS 2009), Aachen, Germany, 2009, pp. 65–68.

    Chapter  Google Scholar 

  23. Thompson, S.E., Sun, G., Choi, Y.S., and Nishida, T., Uniaxial process induced strained Si: Extending the CMOS roadmap, IEEE Trans. Electron Devices, 2006, vol. 53, no. 5, pp. 1010–1020.

    Article  Google Scholar 

  24. Gerasimenko, N.N. and Parkhomenko, Yu.N., Kremnii?material nanoelektroniki (Silicon-Material for Nanoelectronics), Moscow: Tekhnosfera, 2007.

    Google Scholar 

  25. Restrepo, O.D., Varga, K., and Pantelides, S.T., First principles calculations of electron mobilities in silicon: Phonon and coulomb scattering, Appl. Phys. Lett., 2009, vol. 94, no. 21, pp. 212103–212105.

    Article  Google Scholar 

  26. Murphy, A.F., Fagas, G., and Greer, J.C., Deformation potentials and electron-phonon coupling in silicon nanowires, Nano Letters, 2010, vol. 10, no. 3, pp. 869–873.

    Article  Google Scholar 

  27. Niquet, Y.M., Delerue, C., and Krzeminski, C., Effects of strain on the carrier mobility in silicon nanowires, Nano Letters, 2012, vol. 12, no. 7, pp. 3545–3550.

    Article  Google Scholar 

  28. Budzulyak, S.I., Tensoresistive effects in strongly strained n-Si and n-Ge crystals, Fiz. Khim. Tverd. Tila, 2012, vol. 13, no. 1, pp. 34–39.

    Google Scholar 

  29. Budzulyak, S.I., Dotsenko, J.P., Gorin, A.E., Kolomoets, V.V., Machulin, V.F., Ermakov, V.N., Venger, E.F., Liarokapis, E., and Tunstall, D.P., Breakdown of donor localized states on the insulating side of strain-induced MI transitions in Si and Ge. Phys. Status Solidi B, 1999, vol. 211, no. 1, pp. 137–142.

    Article  Google Scholar 

  30. Barans’kii, P., Fedosov, A.V., and Gaidar, G.P., Fizychni vlastyvosti krystaliv kremniiu ta germaniiu v poliakh efektyvnogo zovnishn’ogo vplyvu: monografiia (Physical Properties of Silicon and Germanium Crystals in Fields of Effective External Influence), Lutsk: Nadstyr’ia, 2000.

    Google Scholar 

  31. Samoilovich, A.G., Buda, I.S., and Dakhovskii, I.V., Anisotropic scattering theory, Fiz. Tekh. Polupr., 1973, vol. 7, no. 4, p. 859. DE-750 from 2 December 1972.

    Google Scholar 

  32. Gaidar, G.P. and Litovchenko, P.G., Conversion of isoenergetic rotation ellipsoids in n-Si in triaxial ellipsoids under influence of directional elastic shear deformation, Dopovidi Nats. Akad. Nauk Ukrainy, 1998, no. 1, pp. 121–123.

    Google Scholar 

  33. Baranskii, P.I., Kolomoets, V.V., and Fedosov, A.V., Piezoresistance appearing in conditions of the symmetric arrangement of the deformation axis relative all isoenergetic ellipsoids in n-Si, Fiz. Tekh. Poluprovodn., 1979, vol. 13, no. 4, pp. 815–819.

    Google Scholar 

  34. Hensel, J.C., Hasegawa, H., and Nakayama, M., Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond, Phys. Rev., 1965, vol. 138, no. 1A, pp. A225–A238.

    Article  Google Scholar 

  35. Gaidar, G.P., On methodology of measuring parameters with the increased sensitivity to residual or irradiation induced inhomogeneities in semiconductors, Semicond. Phys., Quantum Electron. Optoelectron., 2009, vol. 12, no. 4, pp. 324–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Gaidar.

Additional information

Original Russian Text © G.P. Gaidar, 2015, published in Elektronnaya Obrabotka Materialov, 2015, No. 2, pp. 85–92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaidar, G.P. Tensoresistance as an information source on mobility anisotropy parameter K = μ in multivalley semiconductors and certain new possibilities of deformation metrology. Surf. Engin. Appl.Electrochem. 51, 188–195 (2015). https://doi.org/10.3103/S1068375515020039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375515020039

Keywords

Navigation