Skip to main content

Study of the properties of nanocomposite cobalt-containing IR-pyrolyzed polyacrylonitrile films

Abstract

Nanocomposite films of Co-containing polyacrylonitrile (PAN) films were manufactured using the method of pyrolysis under incoherent IR-radiation and were studied using AFM, XPS, and XRD atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) methods. The XPS method was used to determine the elemental composition and the chemical and electron states of the elements of the film material. The XRD method showed that the obtained materials contained crystalline inclusions of CoO, Co3O4, and CoO(OH) in an organic matrix of PAN. The AFM method revealed that the film surfaces have high values of the mean square roughness of R q = 10.4–53.1 nm, which linearly depend on the concentration of the modifying additive in the film material. It was established that the films of Co-containing PAN have semiconducting properties and are sensitive to NO2, Cl2, and CO.

This is a preview of subscription content, access via your institution.

References

  1. Nataraj, S.K., Yang, K.S., and Aminabhavi, T.M., Polyacrylonitrile-based nanofibers—A state-of-the-art review, Prog. Polym. Sci., 2012, vol. 37, pp. 487–513.

    Article  Google Scholar 

  2. Surianarayanan, M., Vijayaraghavan, R., and Raghavan, K.V., Spectroscopic investigations of polyacrylonitrile thermal degradation, J. Polym. Sci., 1998, vol. 36, pp. 2503–2512.

    Article  Google Scholar 

  3. Chatterjee, N., Basu, S., Palit, S.K., and Maiti, M.M., An XRD characterization of the thermal degradation of polyacrylonitrile, J. Polym. Sci. Part B: Polym. Phys., 1995, vol. 33, pp. 1705–1712.

    Article  Google Scholar 

  4. Jing, M., Wang, C., Wang, Q., et al., Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350–600°C, Polym. Degrad. Stabil., 2007, vol. 92, pp. 1737–1742.

    Article  Google Scholar 

  5. Ouyang, Q., Cheng, L., and Wang, H., Li K., Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile, Polym. Degrad. Stabil., 2008, vol. 93, pp. 1415–1421.

    Article  Google Scholar 

  6. Zemtsov, L.M. and Karpacheva, G.P., Chemical transformations of polyacrylonitrile under incoherent infrared radiation, Vysokomol. Soedin., 1994, vol. 36, no. 6, pp. 919–924.

    Google Scholar 

  7. Zemtsov, L.M., Karpacheva, G.P., Efimov, O.N. et al., Structure and properties of infra-red-irradiated polyacrylonitrile and its composites, Chemine Tecnol., 2005, vol. 35, no. 1, pp. 25–28.

    Google Scholar 

  8. Obvintseva, L.A., Semiconductor gas sensors for determining chemically active gaseous impurities in air, Ross. Khim. Zh., 2008, vol. 2, pp. 62–74.

    Google Scholar 

  9. Petrov, V.V., Study of peculiarities of interactions of gas molecules with the surfaces of oxide gas-sensitive materials, Nanoi Mikrosistem. Tekh., 2007, no. 1, pp. 24–27.

    Google Scholar 

  10. Kumar, A., Srivastava, A., Galaev, I., and Mattiasson, B., Smart polymers: Physical forms and bioengineering applications, Prog. Polym. Sci., 2007, vol. 32, pp. 1205–1237

    Article  Google Scholar 

  11. Lange, U., Roznyatovskaya, N.V., and Mirsky, V.M., Conducting polymers in chemical sensors and arrays, Anal. Chim. Acta, 2008, vol. 614, pp. 1–26.

    Article  Google Scholar 

  12. Li, X., Wang, Y., Yanget, X., et al., Conducting polymers in environmental analysis, Trends Analyt. Chem., 2012, vol. 39, pp. 163–179.

    Article  Google Scholar 

  13. Bednaya, T.A., Konovalenko, S.P., Semenistaya, T.V., and Korolev, A.N., The effect of modifying additives on gas-sensitivity of nanocomposite materials based on polyacrylonitrile, Persp. Mater., 2012, no. 5, pp. 39–44.

    Google Scholar 

  14. Kozhitov, L.V., Tekhnologiya materialov mikroi nanoelektronoki, (Technology of Materials of Micro- and Nanoelectronics), Moscow: Mosow Inst. Steel Alloys, 2007.

    Google Scholar 

  15. Semenistaya, T.V., Petrov, V.V., and Lu, P., Nanocomposite of Ag-polyacrylonitrile as a selective chlorine sensor, Adv. Mater. Res., 2013, vol. 804, pp. 135–140.

    Article  Google Scholar 

  16. Konovalenko, S.P., Bednaya, T.A., Semenistaya, T.V., and Korolev, A.N., Forecasting of the influence of technological parameters on electrical resistance in formation of gas-sensitive materials based on polyacrylonitrile, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2013, no. 1, pp. 48–52.

    Google Scholar 

  17. Korolev, A.N., Al’-Khadrami, I.S., Semenistaya, T.V., et al., The method for manufacturing of gas-sensitive material for the sensor of nitrogen dioxide, Bull. 9. RU 2415158 C2, 2011.

    Google Scholar 

  18. Lu Pin, Gorbatenko, Yu.A., Semenistaya, T.V., et al., Manufacturing of sensitive elements of gas-sensors based on polyacrylonitrile and silver-containing polyacrylonitrile films and determining their characteristics, Nano- and Microsys. Tech., 2011, no. 9, pp. 5–12.

    Google Scholar 

  19. Choi, U.-S., Sakai, G., Shimanoe, K., and Yamazoe, N., Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2, Sensor Actuat. B-Chem., 2006, vol. 107, pp. 397–401.

    Article  Google Scholar 

  20. Nefedov, V.I., Rentgenoelektronnaya i fotoelektronnaya spektroscopiya (X-ray ELectron and Photoelectron Spectroscopies), Moscow: Znanie, 1983.

    Google Scholar 

  21. Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, John Wiley & Sons, Ltd, Chichester, 1992, p. 295.

    Google Scholar 

  22. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., and Powell, C.J., NIST X-ray Photoelectron Spectroscopy Database, http://srdata.nist.gov/xps/

  23. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg G.E., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Phys. Electron. Division, Eden Prairie, Minn., 1979.

    Google Scholar 

  24. Shul’ga, Yu.M., Rubtsov, V.I., Efimov, O.N., et al., Study of pyrolyzed polyacrylonitrile films by the X-ray photoelectron spectroscopy, Auger electron spectroscopy and electron energy-loss spectroscopy, Vysokomol. Soedin., Ser. A, 1996, vol. 38, no. 6, pp. 989–992.

    Google Scholar 

  25. Loginova, T.P., Bronshtein, L.M., Mirzoeva, E.Sh., et al., Study of thermal transformations of metal carbonyl polyacrylonitriles by IR-spectroscopy and X-ray diffraction, Vysokomol. Soedin., 1993, vol. 35, no. 1, pp. 28–31.

    Google Scholar 

  26. Guyon, C., Barkallah, A., Rousseau, F., et al., Deposition of cobalt oxide thin films by plasma-enhanced chemical vapour deposition (PECVD) for catalytic applications, Surf. Coat. Tech., 2011, vol. 206, pp. 1673–1679.

    Article  Google Scholar 

  27. Kang, E.T., Neoh, K.G., and Tan, K.L., Polyaniline: A polymer with many interesting intrinsic redox states, Prog. Polym. Sci., 1998, vol. 23, no. 2, pp. 277–324.

    Article  Google Scholar 

  28. Akid, H. and Wang, R., Anticorrosion sol-gel coating for metal substrate, Patent: EP2526219A1.

  29. Feng, W., Li, H., Cheng, X., et al., A comparative study of pyrolyzed and doped cobalt-polypyrrole eletrocatalysts for oxygen reduction reaction, Appl. Surf. Sci., 2012, vol. 258, pp. 4048–4053.

    Article  Google Scholar 

  30. Mu, S., Wu, Z., Wang, Y., et al., Formation and characterization of cobalt oxide layers on polyimide Films via surface modification and ion-exchange technique, Thin Solid Films, 2010, vol. 518, pp. 4175–4182.

    Article  Google Scholar 

  31. Hasik, M., Kurkowska, I., and Bernasik, A., Polyaniline incorporating cobalt ions from CoCl2 solutions, React. Funct. Polym., 2006, vol. 66, pp. 1703–1710.

    Article  Google Scholar 

  32. Guo, W., Yifeng, E., li Gao, et al., A catalytic nanostructured cobalt oxide electrode enables positive potential operation for the cathodic electrogenerated chemiluminescence of Ru(bpy) 2+3 with dramatically enhanced intensity, Suppl. Mater. (ESI) for Chem. Commun. The Royal Soc. Chem., 2010, vol. 46, pp. 1290–1292

    Article  Google Scholar 

  33. Makhseed, S., Al-Kharafi, F., Samuel, J., and Ateya, B., Catalytic oxidation of sulphide ions using a novel microporous cobalt phthalocyanine network polymer in aqueous solution, Catalysis Commun., 2009, no. 10, pp. 1284–1287.

    Google Scholar 

  34. Amri, A., Duanb, X., Yinc, C., et al., Solar absorptance of copper-cobalt oxide thin film coatings with nanosize, grain-like morphology: Optimization and synchrotron radiation XPS studies, Appl. Surf. Sci., 2013, vol. 275, pp. 127–135.

    Article  Google Scholar 

  35. Li, B., Xie, Y., Wu, C., et al., Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures, Mater. Chem. Phys., 2006, vol. 99, pp. 479–486.

    Article  Google Scholar 

  36. Guyon, C., Barkallah, A., and Rousseau, F., et al., Deposition of cobalt oxide thin films by plasmaenhanced chemical vapour deposition (PECVD) for catalytic applications, Surf. Coat. Tech., 2011, vol. 206, pp. 1673–1679.

    Article  Google Scholar 

  37. Huang, C.-H., Liu, S., and Hwang, W., Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC), Energy, 2011, vol. 36, pp. 4410–4414.

    Article  Google Scholar 

  38. Li, W., Jung, H., Hoa, N.D.,et al. Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application, Sens. Actuat. B-Chem., 2010, vol. 150, pp. 160–166.

    Article  Google Scholar 

  39. Muratov, D.G., Kozlov, V.V., Krapukhin, V.V., et al., Study of electric conductivity and semiconducting properties of a new carbon material based on IR-pyrolyzed polyacrylonitrile ((C3H3N)n), Izv. Vyssh. Uchebn. Zaved., Mater. Electron. Tech., 2007, no. 3, pp. 26–30.

    Google Scholar 

  40. Dulov, A.A. and Slinkin, A.A., Organicheskie poluprovodnuki,(Organic Semiconductors), Moscow: Nauka, 1970.

    Google Scholar 

  41. Aleksanyan, M.S., Arakeliyan, V.M., Arutyunyan, V.M., et al., Gas sensor based on nanosized In2O3:Ga2O3 film, Izv. Armenian Nats. Akad. Sci., 2010, vol. 45, no. 6, pp. 447–455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Semenistaya.

Additional information

Original Russian Text © T.V. Semenistaya, V.V. Petrov, Kh.Kh. Kalazhokov, Z.Kh. Kalazhokov, B.S. Karamurzov, Kh.V. Kushkhov, S.P. Konovalenko, 2015, published in Elektronnaya Obrabotka Materialov, 2015, No. 1, pp. 9–18.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenistaya, T.V., Petrov, V.V., Kalazhokov, K.K. et al. Study of the properties of nanocomposite cobalt-containing IR-pyrolyzed polyacrylonitrile films. Surf. Engin. Appl.Electrochem. 51, 9–17 (2015). https://doi.org/10.3103/S1068375515010147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375515010147

Keywords