Skip to main content

Electrodeposition of Fe and composite Fe/ZrO2 coatings from a methanesulfonate bath

Abstract

The electrodeposition of iron and composite iron-zirconia coatings from a methanesulfonate electrolyte was investigated. The current efficiency of iron deposition reaction was stated to be sufficiently higher in methanesulfonate electrolytes than in usual sulfate baths. Iron coatings electrodeposited from a methanesulfonate bath have a nanocrystalline structure. The Fe coatings obtained from methanesulfonate baths are harder than those deposited from sulfate baths because of the strengthening effect by the Hall-Petch mechanism. The composite Fe/ZrO2 coatings can be obtained from the iron electroplating baths containing the particles of zirconia stabilized by 3 mol % yttria. The kinetics of ZrO2 particles co-deposition with iron in methanesulfonate electrolytes obeys Guglielmi’s model. The insertion of zirconia particles into the iron matrix results in an appreciable increase of the coatings microhardness via the dispersion strengthening mechanism.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Díaz, S.L., Calderón, J.A., Barcia, O.E., and Mattos, O.R., Electrodeposition of iron in sulphate solutions, Electrochim. Acta, 2008, vol. 53, pp. 7426–7435.

    Article  Google Scholar 

  2. 2.

    Panayotova, M., Deposition of Fe-C alloy on structural steel and cast iron for repair of worn machine parts, Surf. Coat. Technol., 2000, vol. 124, pp. 266–271.

    Article  Google Scholar 

  3. 3.

    Miyamoto, N., Yoshida, K., Matsuoka, M., and Tamaki, J., Effect of phosphorus content on mechanical properties of electrodeposited Fe-C-P alloys, J. Electrochem. Soc., 2004, vol. 151, pp. C645–C648.

    Article  Google Scholar 

  4. 4.

    Lallemand, F., Ricq, L., Wery, M., Berçot, P., and Pagetti, J., The influence of organic additives on the electrodeposition of iron-group metals and binary alloy from sulfate electrolyte, Appl. Surf. Sci., 2004, vol. 228, pp. 326–333.

    Article  Google Scholar 

  5. 5.

    Danilov, F.I., Protsenko, V.S., and Ubiikon’, A.V., Kinetic regularities governing the reaction of electrodeposition of iron from solutions of citrate complexes of iron(III), Russ. J. Electrochem., 2005, vol. 41, pp. 1282–1289.

    Article  Google Scholar 

  6. 6.

    Pan, B., Fang, X., and Tian, Y., Electrodeposition of Fe-diamond composite material for manufacture of diamond tools, Appl. Mech. Mater., 2010, vols. 37–38, pp. 398–401.

    Article  Google Scholar 

  7. 7.

    Zhou, P., Zhong, Y., Wang, H., Fan, L., Dong, L., Li, F., Long, Q., and Zheng, T., Behavior of Fe/nano-Si particles composite electrodeposition with a vertical electrode system in a static parallel magnetic field, Electrochim. Acta, 2013, vol. 111, pp. 126–135.

    Article  Google Scholar 

  8. 8.

    Gernon, M.D., Wu, M., Buszta, T., and Janney, P., Environmental benefits of methanesulfonic acid: comparative properties and advantages, Green Chem., 1999, vol. 1, pp. 127–140.

    Article  Google Scholar 

  9. 9.

    Finšgar, M. and Milošev, I., Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid, Corr. Sci., 2010, vol. 52, pp. 2430–2438.

    Article  Google Scholar 

  10. 10.

    Balaji, R. and Pushpavanam, M., Methanesulphonic acid in electroplating related metal finishing industries, Trans. Inst. Met. Finish., 2003, vol. 81, no. 5, pp. 154–158.

    Google Scholar 

  11. 11.

    Martyak, N.M. and Seefeldt, R., Additive-effects during plating in acid tin methanesulfonate electrolytes, Electrochim. Acta, 2004, vol. 49, pp. 4303–4311.

    Article  Google Scholar 

  12. 12.

    Protsenko, V.S., Kityk, A.A., and Danilov, F.I., Kinetics and mechanism of chromium electrodeposition from methanesulfonate solutions of Cr(III) salts, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 5, pp. 384–389.

    Article  Google Scholar 

  13. 13.

    Low, C.T.J. and Walsh, F.C., Electrodeposition of tin, copper and tin-copper alloys from a methanesulfonic acid electrolyte containing a perfluorinated cationic surfactant, Surf. Coat. Technol., 2008, vol. 202, pp. 1339–1349.

    Article  Google Scholar 

  14. 14.

    Danilov, F.I., Protsenko, V.S., Vasil’eva, E.A., and Kabat, O.S., Antifriction coatings of Pb-Sn-Cu alloy electro-deposited from methanesulphonate bath, Trans. Inst. Metal. Finish., 2011, vol. 89, no. 3, pp. 151–154.

    Article  Google Scholar 

  15. 15.

    Mohan, S., Vijayakumar, J., and Saravanan, G., Influence of CH3SO3H and AlCl3 in direct and pulse current electrodeposition of trivalent chromium, Surf. Eng., 2009, vol. 25, pp. 570–576.

    Article  Google Scholar 

  16. 16.

    Sidel’nikova, S.P., Petrov, Yu.N., and Gorodetskii, Yu.S., Investigation of the cathodic polarization and hydrogenation of deposits in the electrodeposition of iron from methylsulfate and sulfate electrolytes, Prot. Met., 1974, vol. 10, pp. 177–179.

    Google Scholar 

  17. 17.

    Pleshka, E.D., Adhesion of iron coatings with steel and cast iron, Surf. Eng. Appl. Electrochem., 2008, vol. 44, no. 2, pp. 92–97.

    Article  Google Scholar 

  18. 18.

    Pleshka, E.D., Iron coatings from multicomponent methyl sulfate chloride electrolyte, Surf. Eng. Appl. Electrochem., 2008, vol. 44, no. 4, pp. 264–270.

    Article  Google Scholar 

  19. 19.

    Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Electrodeposition of composite coatings containing nanoparticles in a metal deposit, Surf. Coat. Technol., 2006, vol. 201, pp. 371–383.

    Article  Google Scholar 

  20. 20.

    Wang, W., Hou, F.-Y., Wang, H., and Guo, H.-T., Fabrication and characterization of Ni-ZrO2 composite nanocoatings by pulse electrodeposition, Scripta Mater., 2005, vol. 53, pp. 613–618.

    Article  Google Scholar 

  21. 21.

    Huang, J.M., Li, Y., Zhang, G.F., Hou, X.D., and Deng, D.W., Electroplating of Ni-ZrO2 nanocomposite coatings on 40CrNiMo7 alloy, Surf. Eng., 2013, vol. 29, pp. 194–199.

    Article  Google Scholar 

  22. 22.

    Hou, F., Wang, W., and Guo, H., Effect of the dispersibility of ZrO2 nanoparticles in Ni-ZrO2 electroplated nanocomposite coatings on the mechanical properties of nanocomposite coatings, Appl. Surf. Sci., 2006, vol. 252, pp. 3812–3817.

    Article  Google Scholar 

  23. 23.

    Vasil’eva, E.A., Smenova, I.V., Protsenko, V.S., Konstantinova, T.E., and Danilov, F.I., Electrodeposition of hard iron-zirconia dioxide composite coatings from a methanesulfonate electrolyte, Russ. J. Appl. Chem., 2013, vol. 86, pp. 1735–1740.

    Article  Google Scholar 

  24. 24.

    Slipenyuk, A.M., Glinchuk, M.D., Bykov, I.P., Ragulya, A.V., Klimenko, V.P., Konstantinova, T.E., and Danilenko, I.A., ESR investigation of yttria stabilized zirconia powders with nanosize particles, Ferroelectrics, 2004, vol. 298, pp. 289–296.

    Article  Google Scholar 

  25. 25.

    Konstantinova, T.E., Ragulya, A.V., Doroshkevich, A.S., Volkova, G.K., and Glazunova, V.A., The mechanism of particle formation in Y-doped ZrO2, Int. J. Nanotechnol., 2006, vol. 3, pp. 29–38.

    Article  Google Scholar 

  26. 26.

    Yashchishyn, I.A., Korduban, A.M., Konstantinova, T.E., Danilenko, I.A., Volkova, G.K., Glazunova, V.A., and Kandyba, V.O., Structure and surface characterization of ZrO2-Y2O3-Cr2O3 system, Appl. Surf. Sci., 2010, vol. 256, pp. 7175–7177.

    Article  Google Scholar 

  27. 27.

    Zech, N. and Landolt, D., The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes, Electrochim. Acta, 2000, vol. 45, pp. 3461–3471.

    Article  Google Scholar 

  28. 28.

    Berçot, P., Peña-Muñoz, E., and Pagetti, J., Electrolytic composite Ni-PTFE coatings: An adaptation of Guglielmis model for the phenomena of incorporation, Surf. Coat. Technol., 2002, vol. 157, pp. 282–289.

    Article  Google Scholar 

  29. 29.

    Guglielmi, N., Kinetics of the deposition of inert particles from electrolytic baths, J. Electrochem. Soc., 1972, vol. 119, pp. 1009–1012.

    Article  Google Scholar 

  30. 30.

    Wang, S.-C. and Wei, W.-C., J., Kinetics of electroplating process of nanosized ceramic particle/Ni composite, Mater. Chem. Phys., 2003, vol. 78, pp. 574–580.

    Article  Google Scholar 

  31. 31.

    Bahadormanesh, B. and Dolati, A., The kinetics of Ni-Co/SiC composite coatings electrodeposition, J. Alloys Compd., 2010, vol. 504, pp. 514–518.

    Article  Google Scholar 

  32. 32.

    Erb, U., Size effects in electroformed nanomaterials, Key Eng. Mater., 2010, vol. 444, pp. 163–188.

    Article  Google Scholar 

  33. 33.

    Hall, E.O., The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc., Ser. B, 1951, vol. 64, pp. 747–753.

    Article  Google Scholar 

  34. 34.

    Petch, N.J., The upper yield stress of polycrystalline iron, Acta Met., 1964, vol. 12, pp. 59–65.

    Article  Google Scholar 

  35. 35.

    Khan, A.S., Zhang, H., and Takacs, L., Mechanical response and modeling of fully compacted nanocrystalline iron and copper, Int. J. Plast., 2000, vol. 16, pp. 1459–1476.

    Article  MATH  Google Scholar 

  36. 36.

    Mohajeri, S. and Dolati, A., Electrodeposition of Ni/WC nanocomposite in sulfate solution, Mater. Chem. Phys., 2011, vol. 129, pp. 746–750.

    Article  Google Scholar 

  37. 37.

    Aghaie, E., Najafi, A., Maleki-Ghaleh, H., and Mohebi, H., Effect of SiC concentration in electrolyte on Ni-SiC composite coating properties, Surf. Eng., 2013, vol. 29, pp. 177–182.

    Article  Google Scholar 

  38. 38.

    Gyftou, P., Pavlatou, E.A., and Spyrellis, N., Effect of pulse electrodeposition parameters on the properties of Ni/nano-SiC composites, Appl. Surf. Sci., 2008, vol. 254, pp. 5910–5916.

    Article  Google Scholar 

  39. 39.

    Mokabber, T., Rastegari, S., and Razavizadeh, H., Effect of electroplating parameters on properties of Zn-nano-TiO2 composite coatings, Surf. Eng., 2013, vol. 29, pp. 41–45.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Protsenko.

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Protsenko, V.S., Vasil’eva, E.A., Smenova, I.V. et al. Electrodeposition of Fe and composite Fe/ZrO2 coatings from a methanesulfonate bath. Surf. Engin. Appl.Electrochem. 51, 65–75 (2015). https://doi.org/10.3103/S1068375515010123

Download citation

Keywords

  • electroplating
  • iron
  • zirconia
  • composite coating
  • methanesulfonate electrolyte