Skip to main content
Log in

Features of the corrosion-electrochemical behavior of titanium with a nano- and submicrocrystalline structure

  • Electrical Processes in Engineering and Chemistry
  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The measurements of the corrosion potential and the analysis of the polarization characteristics revealed that titanium VT1-0 with a nano- and submicrograin structure exhibits higher electrochemical activity in a 0.9% NaCl solution than its macrograin analogs. The formation of anode oxide films on the surface of titanium with structures of all types in various modes, including the microarc one, reduces the respective parameters and makes them closer, but it does not eliminate the differences inherent in the original substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharkeev, Yu.P., Eroshenko, A.Yu., Kashin, O.A., Bratchikov, A.D., and Nekhoroshkov, O.N., Bulk Nanostructured Titanium for Medical Use, in Nanotekhnologii i nanomaterialy dlya biologii i meditsiny: sbornik materialov nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem (Nanotechnology and Nanomaterials for Biology and Medicine: Proceedings of Scientific-Practical Conference with International Participation), Novosibirsk, 2007, pp. 157–163.

  2. Kochetkov, Yu.S., Kashin, O.A., Vinokurov, V.A., Faradzhev, R.G., and Lunev, S.A., The Use of Implants with Nanostructured Biocompatible Coatings for Improving the Fixation of Bone Fragments in the Transbone Osteosynthesis by Ilizarov, in Nanotekhnologii i nanomaterialy dlya biologii i meditsiny: sbornik materialov nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem (Nanotechnology and Nanomaterials for Biology and Medicine: Proceedings of Scientific-Practical Conference with International Participation), Novosibirsk, 2007, pp. 100–103.

  3. Mikhailov, O.V., Tkachenko, L.N., Shtern, M.B., and Dubok, V.A., Optimization of the Composition and Geometric Shape of Implants by Computer Simulation, Poroshk. Metall., 2003, nos. 1–2, pp. 10–16.

  4. Legostaeva, E.V., Sharkeev, Yu.P., Kukareko, V.A., Kononov, A.G., Uvarkin, P.V., and Tolkacheva, T.V., Study of the Behavior of a Biocomposite Based on Nanostructured Titanium and a Calcium Phosphate Coating under Triboloading, in Nanotekhnologii i nanomaterialy dlya biologii i meditsiny: sbornik materialov nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem (Nanotechnology and Nanomaterials for Biology and Medicine: Proceedings of Scientific-Practical Conference with International Participation), Novosibirsk, 2007, part 2, p. 204.

  5. Valiev, R.Z. and Alexandrov, I.V., Nanostrukturnye materialy, poluchennye metodom intensivnoi plasticheskoi deformatsii (Nanostructured Materials Prepared by Severe Plastic Deformation), Moscow: Logos, 2002.

    Google Scholar 

  6. Dubok, V.A., Bioceramics: Yesterday, Today, and Tomorrow, Poroshk. Metall., 2008, nos. 7–8, pp. 69–87.

  7. Wie, L., Cong, Q., Xi-jun, W., and Mi, Y., Electrochemical Corrosion of Bulk Nanocrystalline Copper, J. Thejiang Univ. Eng. Sci., 2006, vol. 40, no. 9, pp. 1587–1590.

    Google Scholar 

  8. Nan, L., Ying, L., Shenggang, W., and Fuhui, W., Corrosion Behavior of Nanocrystallized Bulk 304 Stainless Steel: II. Protective Passive Film, J. Chin. Soc. Corros. Prot., 2007, vol. 27, no. 3, pp. 142–146.

    Google Scholar 

  9. Fokin, M.N., Ruskol, Yu.S., and Mosolov, A.V., Titan i ego splavy v khimicheskoi promyshlennosti. Spravochnoe posobie (Titanium and Its Alloys in the Chemical Industry: Handbook), Leningrad: Khimiya, 1978.

    Google Scholar 

  10. Tomashov, N.D., Titan i korrozionno-stoikie splavy na ego osnove (Titanium and Corrosion Resistant Alloys on Its Basis), Moscow: Metallurgiya, 1985.

    Google Scholar 

  11. Moskalenko, V.A., Smirnov, A.R. and Moskalenko, A.V., Cryomechanically Obtained Nanocrystalline Titanium: Microstructure and Mechanical Properties, Fiz. Nizk. Temp., 2009, vol. 35, no. 11, pp. 1160–1164.

    Google Scholar 

  12. Gnedenkov, S.V., Sinebryukhov, S.L., Skorobogatova, T.M., and Gordienko, P.S., Properties of Coatings Formed on Titanium by Microarc Oxidation in Hypophosphite-Aluminate Electrolytes, Elektrokhimiya, 1998, vol. 34, no. 9, pp. 1046–1051 [Russ. J. Electrochem. (Engl. Transl.), vol. 34, no. 9, p. 940].

    Google Scholar 

  13. Kolobov, Yu.R., Kashin, O.A., Sharkeev, Yu.P., Gritsenko, B.P., and Naidenkin, E.V., Processing of the Surface of Technical and Medical Products with High-Energy Flows for Restoring Their Geometric Dimensions and Increasing Service Life, Tekhnol. Mashinostr., 2006, no. 4, pp. 39–44.

  14. Gordienko, P.S., Kharchenko, U.V., Bulanova, S.B., Panin, E.S., Usol’tsev, V.K., and Dostovalov, V.A., Physicochemical Properties of Coatings Formed on Titanium by Microarc Oxidation with Energy Regulation in Breakdown Zones, Fizikokhim. Poverkhnost. Zashch. Met., 2008, vol. 44, no. 5, pp. 510–513 [Prot. Met. Phys. Chem. Surf. (Engl. Transl.), vol. 44, no. 5, p. 475].

    Google Scholar 

  15. Peksheva, N.P., Interferentsionnye oksidnye plenki na titane i ego splavakh (Interference Oxide Films on Titanium and Its Alloys), Krasnoyarsk: Krasnoyarsk. Gos. Univ., 1988.

    Google Scholar 

  16. Zemskova, O.V., Mechanism of the Anodic Activation of Passive Titanium and Its Alloys, Cand. Sci. (Chem.) Dissertation, Moscow, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Sevidova.

Additional information

Original Russian Text © E.K. Sevidova, A.A. Simonova, 2011, published in Elektronnaya Obrabotka Materialov, 2011, No. 2, pp. 70–75.

About this article

Cite this article

Sevidova, E.K., Simonova, A.A. Features of the corrosion-electrochemical behavior of titanium with a nano- and submicrocrystalline structure. Surf. Engin. Appl.Electrochem. 47, 162–166 (2011). https://doi.org/10.3103/S1068375511020165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375511020165

Keywords

Navigation