Skip to main content
Log in

Conversion of energy under conditions of electroisothermal convection

  • Electrical Processes in Engineering and Chemistry
  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The physical aspects of the conversion of electric energy into mechanical energy (an EHD pump) and mechanical energy into electric energy (an EHD generator) are described. Examples of the practical design of such converters are given: an EHD pump at an “electric wind” in a poor conducting liquid; an EHD wind generator; an EHD flowmeter generator; a Kelvin generator. The obtained results can be used as a basis for the development and design of working EHD energy converters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostroumov, G.A., Vzaimodeistvie elektricheskikh i gidrodinamicheskikh polei, (Interaction of Electric and Hydrodynamic Fields), Moscow: Nauka, 1979.

    Google Scholar 

  2. Senftleben, H. and Braun, W., Der Einflub Elektrisher Felder auf den Wärmestrom in Gasen Phys. Z., 1936, vol. 102, no. 7/8, pp. 480–506.

    Article  Google Scholar 

  3. Bologa, M.K., Grosu, F.P., and Kozhukhar, I.A., Elektrokonvektsia i teploobmen, (Electroconvection and Heat Exchange), Kishinev: Shtiintsa, 1977.

    Google Scholar 

  4. Grosu, F.P., Bologa, M.K., and Bologa, Al.M., Peculiar Features of Heat Transfer under Conditions of Electric Convection, Elektr. Obrab. Mater., 2010, no. 4, pp. 41–55.

  5. Stuetzer, O.M., Instability of Certain Electrohydrodynamic Systems, Appl. Phys., 1959, vol. 30, p. 984, 1960, vol. 31, p. 136.

    Article  Google Scholar 

  6. Denisov, A.A. and Nagornyi, V.S., Elektrogidroi elektrogazodinamicheskie ustroistva avtomatiki, (Electrohydro- and Electrogasdynamic Automation Devices), Leningrad: Mashinostroenie, 1979.

    Google Scholar 

  7. Rubashov, I.B. and Bortnikov, N.S., Elektrogazodinamika, (Electrogasdynamics), Moscow: Atomizdat, 1971.

    Google Scholar 

  8. Imyanitov, I.M. and Shifrin, K.S., Current State of Investigations of Atmospheric Electricity, Usp. Fiz. Nauk, 1962, vol. 76, no. 4.

  9. Grosu, F.P., Natural Convection of Charged Wet Air in Inclined Parallel-Plate Capacitor, Elektr. Obrab. Mater., 2005, no. 3, pp. 50–54.

  10. Grosu, F.P., Bologa, M.K., Polikarpov, A.A., and Motorin, O.V., Extraction of Water and Electric Energy from the Environment on the Basis of Electrohydrodynamic Phenomena, Sbornik dokladov IX Mezhdunarodnoi konferentsii “Sovremennye problemy elektrofiziki i elektrogidrodinamiki zhidkostei”, (Proc. IX Int. Conf. “Modern Problems of Electrophysics and Electrohydrodynamics of Liquids”), St. Petersburg, 2009, pp. 368–371.

  11. Kozhakhar, I.A., Bologa, M.K., and Malakhov, A.V., Some Methods of Design of Electrohydrodynamic Pump, Elektr. Obrab. Mater., 1982, no. 5, pp. 74–76.

  12. Stishkov, Yu.K. and Ostapenko, A.A., Elektrodinamicheskie techeniya v zhidkikh dielektrikakh, (Electrodynamic Flows in Liquid Dielectrics), Leningrad: Izd. Leningradskogo universiteta, 1989.

    Google Scholar 

  13. Apfel’baum, M.O., Drigov, L.A., Munenin, V.G., and Tarantsev, K.V., Electrodynamic Pump Effect, Tezisy dokladov III Mezhdunarodnoi konferentsii “Sovremennye problemy elektrodinamiki i elektrofiziki zhidkikh dielektrikov”, (Abstr. III Int. Conf. “Modern Problems of Electrodynamics and Electrophysics of Liquid Dielectrics”), St. Petersburg, 1994, pp. 13–14.

  14. Zhakin, A.I., Electrohydrodynamics of Liquid Dielectrics on the Basis of Dissociation-Injection Model of Conductivity, Izv. AN SSSR, 1986, no. 4, pp. 3–13.

  15. Bologa, M.K., Grosu, F.P., and Kozhevnikov, I.V., Peculiar Features of Electrohydrodynamic Flows in Multielectrode Systems, Elektr. Obrab. Mater., 2007, no. 6, pp. 29–34.

  16. Ostroumov, G.A. and Petrichenko, N.A., Electric Wind in Insulating Liquids, Elektr. Obrab. Mater., 1974, no. 6, pp. 37–39.

  17. Kaptsov, N.A., Elektricheskie yavleniya v gazakh i vakuume, (Electric Phenomena in Gases and Vacuum), Moscow: Gostekhizdat, 1950.

    Google Scholar 

  18. Vetroenergetika, (Wind Power Engineering), De Renzo, D.J., Ed., Moscow: Energoatomizdat, 1982.

    Google Scholar 

  19. Kozhukhar, I.A. and Bologa, M.K., Wind Electrohydrodynamic Generator, Elektr. Obrab. Mater., 2002, no. 5, pp. 67–69.

  20. Bologa, M.K., Grosu, F.P. and Kozhukhar, I.A., On Calculation of Wind Electrogasdynamic Generator, Elektr. Obrab. Mater., 2003, no. 4, pp. 37–40.

  21. Vereshchagin, I.P., Levitov, V.I., Mirzabekyan, G.Z. and Pashin, M., Osnovy elektrodinamiki dispersnykh system, (The Foundations of Electrodynamics of Dispersed Systems), Moscow: Energiya, 1974.

    Google Scholar 

  22. Grosu, F.P., Petrichenko, N.A., Dubrovskii, E.F., and Vetkhin, G.N., Electroneutralization of Charged Insulating Liquid Flowing in the Field of Electrodes with the Prescribed Potential, Elektr. Obrab. Mater., 1986, no. 2, pp. 46–48.

  23. Hill, M. and Iacobs, D., A Novel Kelvin Electrostatic Generator, Phys. Educ., 1997, vol. 32, no. 1, pp. 60–63.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. Grosu.

Additional information

Original Russian Text © F.P. Grosu, M.K. Bologa, 2010, published in Elektronnaya Obrabotka Materialov, 2010, No. 5, pp. 45–55.

About this article

Cite this article

Grosu, F.P., Bologa, M.K. Conversion of energy under conditions of electroisothermal convection. Surf. Engin. Appl.Electrochem. 46, 431–439 (2010). https://doi.org/10.3103/S1068375510050066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375510050066

Keywords

Navigation