Skip to main content
Log in

Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions

  • Electrical Surface Treatment Methods
  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Friend, W.Z., Corrosion of Nickel and Nickel Alloys, New York: Wiley-Interscience, 1980, vol. 248, pp. 95–135.

    Google Scholar 

  2. Chassaing, E., Vu Quang, K., and Wiart, R., Mechanism of Nickel-Molybdenum Alloy Electrodeposition in Citrate Electrolytes, Journal of Applied Electrochemistry, 1989, vol. 19, no. 6, pp. 839–844.

    Article  Google Scholar 

  3. Crousier, J., Eyraud, M., Crousier, J.-P., and Roman, J.-M., Influence of Substrate on the Electrodeposition of Nickel-Molybdenum alloys, Journal of Applied Electrochemistry, 1992, vol. 22, no. 8, pp. 749–755.

    Article  Google Scholar 

  4. Podlaha, E.J. and Landolt, D. Induced Codeposition. II, Journal of the Electrochemical Society, 1996. vol. 143, pp. 885–892.

    Article  Google Scholar 

  5. Beltowska-Lehman, E., Ozga, P., and Chassaing, E., Pulse Electrodeposition of Ni-Cu-Mo Alloys, Surface and Coatings Technology, 1996, vol. 78, pp. 233–237.

    Article  Google Scholar 

  6. Cesiulis, H. and Budreika, A., Hydrogen Evolution and Corrosion of W and Mo Alloys with Co and Ni, Physicochemical Mechanics of Materials, 2010, no. 8, pp. 808–815.

  7. Fan, C., Piron, D.L., Sleb, A., and Paradis, P. Study of Electrodeposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis, Journal of the Electrochemical Society, 1994, vol. 141, pp. 382–387.

    Article  Google Scholar 

  8. Fan, C., Piron, D.L., and Paradis, P., Hydrogen Evolution on Electrodeposited Nickel-Cobalt-Molybdenum in Alkaline Water Electrolysis, Electrochimica Acta, 1994, vol. 39, pp. 2715–2722.

    Article  Google Scholar 

  9. Taylor, W.P., Schneider, M., Baltes, H., and Allen, M.G., A NiFeMo Electroplating Bath for Micromachined Structure, Electrochemical and Solid-State Letters, 1999, vol. 2, pp. 624–626.

    Article  Google Scholar 

  10. Hu, C.-C. and Weng, C.-Y., Hydrogen Evolving Activity on Nickel-Molybdenum Deposits using Experimental Strategies, Journal of Applied Electrochemistry, 2000, vol. 30, pp. 499–506.

    Article  Google Scholar 

  11. Sato, T., Takahashi, H., Matsubara, and E., Muramatsu, A., Local Atomic Structure and Catalytic Activities in Electrodeposited Mo-Ni Alloys: Special Issue on Grain Boundaries, Interfaces, Defects and Localized Quantum Structures in Ceramics, Materials Transactions, 2002, vol. 43, pp. 1525–1529.

    Article  Google Scholar 

  12. Zabinski, P.R., Nemoto, H., Meguro, S., Asami, K., and Hashimoto, K., Electrodeposited Co-Mo-C Cathodes for Hydrogen Evolution in a Hot Concentrated NaOH Solution, Journal of the Electrochemical Society, 2003, vol. 150, pp. C717–C722.

    Article  Google Scholar 

  13. Gómez, E., Pellicer, E., and Vallés, E., Electrodeposited Cobalt-Molybdenum Magnetic Materials, Journal of Electroanalytical Chemistry, 2001, vol. 517, pp. 109–116.

    Article  Google Scholar 

  14. Gómez, E., Pellicer, E., and Vallés, E., Influence of the Bath Composition and the pH on the Induced Cobalt/Molybdenum Electrodeposition, Journal of Electroanalytical Chemistry, 2003, vol. 556, pp. 137–145.

    Article  Google Scholar 

  15. Gómez, E., Pellicer, E., and Valles, E., Microstructures of Soft-Magnetic Cobalt-Molybdenum Alloy Obtained by Electrodeposition Seed Layer/Silicon Substrates, Electrochemistry Communications, 2004. vol. 6, pp. 853–859.

    Article  Google Scholar 

  16. Gómez, E., Pellicer, E., Duch, M., Esteve, J., and Valles, E., Molybdenum Alloy Electrodeposits for Magnetic Actuation, Electrochimica Acta, 2006, vol. 51, pp. 3214–3222.

    Article  Google Scholar 

  17. Myung, N.V., Park, D.Y., Schwartz, M., Nobe, K., Yang, H., Yang, C.-K., and Judy, J.W., Electrodeposited Hard Magnetic Thin Films for MEMS Applications, Sixth International Symposium on Magnetic Materials, Processes and Devices, Proceedings of the Electrochemical Society, 2000, PV 2000-29.

  18. Gómez, E., Kipervaser, Z.G., and Valles, E., A Model for Potentiostatic Current Transients during Alloy Deposition: Cobalt/Molybdenum Alloy, Journal of Electroanalytical Chemistry, 2003, vol. 557, pp. 9–18.

    Article  Google Scholar 

  19. Kuznetsov, V.V., Bondarenko, Z.V., Pshenichkina, T.V., et al., Electrodeposition of a Cobalt-Molybdenum Alloy from an Ammonia-Citrate Electrolyte, Russian Journal of Electrochemistry, 2007, vol. 43, no. 3, pp. 349–354.

    Article  Google Scholar 

  20. Podlaha, E.J. and Landolt, D., Induced Codeposition: II. Mathematical Modeling of Ni-Mo Alloys, Journal of the Electrochemical Society, 1996, vol. 143, pp. 893–899.

    Article  Google Scholar 

  21. Gómez, E., Marin, M., Sanz, F., and Valles, E., Nanoand Micrometric Approaches to Cobalt Electrodeposition on Carbon Substrates, Journal of Electroanalytical Chemistry, 1997, vol. 422, pp. 139–147.

    Article  Google Scholar 

  22. Stepanova, L.I., Purovskaja, O.G., Azarko, V.N., and Sviridov, V.V., Peculiarities of Ni-Mo Alloys Electrodeposition from Citrate Electrolytes, Proceedings of the Academy of Sciences of Belarus Series of Chemical Sciences, 1997, no. 1, pp. 38–43.

  23. Gómez, E., Pellicer, E., and Valles, E., Developing Plating Baths for the Production of Cobalt-Molybdenum Films, Surface & Coatings Technology, 2007, vol. 197, pp. 238–246.

    Article  Google Scholar 

  24. Subramania, A., Sathiya Priya, A.R., and Muralidharan, V.S., Electrocatalytic Cobalt-Molybdenum Alloy Deposits, International Journal of Hydrogen Energy, 2007, vol. 32, no. 14, pp. 2843–2847.

    Article  Google Scholar 

  25. Podlaha, E.J. and Landolt, D., Induced Codeposition: III. Molybdenum Alloys with Nickel, Cobalt and Iron, Journal of the Electrochemical Society, 1997, vol. 144, pp. 1672–1680.

    Article  Google Scholar 

  26. Krohn, A. and Brown, T.M., Electrodeposition of Cobalt-Molybdenum Alloys, Journal of the Electrochemical Society, 1961, vol. 108, pp. 60–64.

    Article  Google Scholar 

  27. Stasov, A.A. and Pasechnik, S.A., Nickel-Molybdenum Alloys Electrodeposition from Pyrophosphate Electrolyte, Izv. Vysh. Uch. Zav. Ser. Khim. Khim. Tekhnol., 1973, vol. 16, no. 4, pp. 600–603 (in Russian).

    Google Scholar 

  28. Donten, M., Cesiulis, H., and Stojek, Z., Electrodeposition of Amorphous/Nanocrystalline and Polycrystalline Ni-Mo Alloys from Pyrophosphate Baths, Electrochimica Acta, 2005. vol. 50, pp. 1405–1412.

    Article  Google Scholar 

  29. Cesiulis, H., Donten, M., Donten, M.L., and Stojek, Z. Electrodeposition of Ni-W, Ni-Mo and Ni-Mo-W Alloys from Pyrophosphate Baths, Materials Science (Medziagotyra), 2001. vol. 7, no. 4, pp. 237–241.

    Google Scholar 

  30. Sidel’nikova, S.P., Volodina, G.F., Grabko, D.Z., and Dikusar, A.I., Electrochemical Obtaining of Co-Mo Coatings from Citrate Solutions Containing EDTA: Composition, Structure, and Micromechanical Properties, Surface Engineering and Applied Electrochemistry, 2007. vol. 43, no. 6, pp. 425–430.

    Article  Google Scholar 

  31. Kublanovsky, V., Bersirova, O., Yapontseva, Yu., Cesiulis, H., and Podlaha-Murphy, E., Cobalt-Molybdenum-Phosphorus Alloys: Electroplating and Corrosion Properties, Protection of Metals and Physical Chemistry of Surfaces, 2009. vol. 45, no. 5, pp. 588–594.

    Google Scholar 

  32. Sidel’nikova, S.P., Dikusar, A.I., Tsyntsaru, N.I., and Celis, J.-P., Effect of the Electrodeposition Conditions on the Morphology, Composition and Physicomechanical Properties of Co-Mo-P alloys, Surface Engineering and Applied Electrochemistry, 2008, vol. 44, no. 6, pp. 428–435.

    Article  Google Scholar 

  33. Vasauskas, V., Padgurskas, J., Rukuiža, R., Cesiulis, H., Celis, J.-P., Milčius, D., and Prosyčevas, I., Cracking Behavior of Electrodeposited Nanocrystalline Tungsten-Cobalt and Tungsten-Iron Coatings, Mechanika (ISSN 1392-1207), 2008, vol. 72, no. 4, pp. 21–27.

    Google Scholar 

  34. Ernst, D.W. and Halt, M.L. Cathode Potentials during the Electrodeposition of Molybdenum Alloys from Aqueous Solutions, Journal of the Electrochemical Society, 1958. vol. 105, pp. 686–692.

    Article  Google Scholar 

  35. Gromova, V.A., Yapontseva, Y.S., Bersirova, O.L., and Kublanovsky, V.S., The Influence of Electrolyte Composition on the Corrosion Properties of Co-Mo Electrolytic Alloys, Metalofiz. Noveishie Tekhnol., 2006. vol. 28, pp. 5019–5026.

    Google Scholar 

  36. Sotskaya, N.V. and Dolgikh, O.V., Kinetics of Cathodic Reduction of Hypophosphite Anions in Aqueous Solutions, Russian Journal of Electrochemistry 2005, vol. 41, no. 12, pp. 1336–1340.

  37. Cesiulis, H., Xie, X.G., and Podlaha-Murphy, E., Electrodeposition of Co-W Alloys with P and Ni, Materials Science-Medziagotyra, 2009, vol. 15, issue. 2, pp. 115–122.

    Google Scholar 

  38. Malyshev, E., Landau, U., and Chivilikhin, S., Modeling the Deposit Thickness Distribution in Copper Electroplating of Semicondutor Wafer Interconnects (Presentation at the Metallization Symposium, AIChE Annual Meeting, Nov. 17–18), 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Cesiulis.

Additional information

The article is published in the original.

About this article

Cite this article

Cesiulis, H., Tsyntsaru, N., Budreika, A. et al. Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions. Surf. Engin. Appl.Electrochem. 46, 406–415 (2010). https://doi.org/10.3103/S1068375510050030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375510050030

Keywords

Navigation