Skip to main content
Log in

Electrodeposition of nanocrystalline Co-W coatings from citrate electrolytes under conditions of controlled hydrodynamic: II. The electrodeposition rate and composition of the coatings

  • Electrical Surface Treatment Methods
  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the ionic mass-transfer effects on the deposition rate, the current efficiency, and the composition and morphology of the coatings has been studied using a rotating cylindrical electrode in a citrate electrolyte containing CoSO4 (0,2 mol/l) and Na2WO4 (0.2 mol/l) (pH = 6.8) at the electrodeposition temperature of 60°C. It has been found that the decrease of the electrodeposition potential and the tungsten concentration in the coating with the current efficiency increase upon the Re number growth (Re ≥ 200) occur only under galvanostatic conditions. At the potentiostatic mode, similar of influence fails to be observed. It is shown that the estimated effects take place due to the electrodeposition through the nonstoichiometric surface coating layer with electronic conductivity, the composition components of which are in electrochemical equilibrium with the components of the solution at the film-solution boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Electrodeposition of Nanocrystalline Co-W Coatings from the Citrate Electrolytes under the Controlled Hydrodynamics Conditions. 1. Co Electrodeposition, Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 6, pp. 446–454.

    Article  Google Scholar 

  2. Brenner, F., Electrodeposition of Alloys, New York: Academic Press Inc., 1963.

    Google Scholar 

  3. Vas’ko, A.T., Elektrokhimiya molibdena i vol’frama (Electrochemistry of Molybdenum and Tungsten), Kiev: Naukova Dumka, 1977.

    Google Scholar 

  4. Podlaha, E.J., and Landolt, D., Induced Codeposition. I. An Experimental Investigation of Ni-Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, no. 3, pp. 885–892.

    Article  Google Scholar 

  5. Eliaz, N., and Gileadi, E., Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, In Modern Aspects of Electrochem., Springer, New-York: 2008, vol. 42, pp. 183–186.

    Google Scholar 

  6. Yao, S., Zhao, H., and Kowaka, M., A New Amorphous Alloy Deposit with High Corrosion Resistance, Corrosion, 1996, vol. 52, no. 3, pp. 183–186.

    Article  Google Scholar 

  7. Donten, M., and Stojek, Z., Pulse Electroplating of Richin Tungsten Thin Films of Amorphous Co-W Alloys, J. Appl. Electrochem., 1996, vol. 26, p. 665.

    Article  Google Scholar 

  8. Atanasov, N., Gencheva, K., and Bratoeva, M., Properties of Nickel-Tungsten Alloys Electrodeposited from Sulfamate Electrolytes, Plating and Surf. Finishing, 1997, vol. 84, no. 2, pp. 67–71.

    Google Scholar 

  9. Donten, M., Bulk and Surface Composition, Amorphous Structure and Thermocrystallization of Electrodeposited Alloys of Tungsten with Iron, Nickel and Cobalt, J. Solid State Electrochem., 1999, vol. 3, pp. 87–96.

    Article  Google Scholar 

  10. Cesiulis, H., Baltutiene, A., Donten, M., Donten, L., and Stojek, Z., Increase in Rate of Electrodeposition and in Ni(II) Concentration in the Bath as a Way to Control Grain Size of Amorphous / Nanocrystalline Ni-W Alloys, J. Solid State Electrochem., 2002, vol. 6, pp. 237–244.

    Article  Google Scholar 

  11. Ibrahim, M.A.M., El Kerim, S.S., and Moussa, S.O., Electrodeposition of Nanocrystalline Cobalt-Tungsten Alloys from Citrate Electrolyte, J. Appl. Electrochem., 2003, vol. 33, pp. 627–633.

    Article  Google Scholar 

  12. Abdel Hamid, Z., Electrodeposition of Cobalt-Tungsten Alloys from Acidic Bath Containing Cationic Surfactants, Materials Letters, 2003, vol. 33, p. 2558–2564.

    Article  Google Scholar 

  13. Huang, Q., Young, D.P., Chan, J.Y., Jiang, J., and Podlaha, E.J., Electrodeposition of FeCoNiCu/Cu Compositionally Modulated Multilayers, J. Electrochem. Soc., 2002, vol. 149, no. 6, pp. 349–354.

    Article  Google Scholar 

  14. Donten, M., Cesiulis, H., and Stojek, Z., Electrodeposition of Amorphous / Nanocrystalline and Crystalline Ni-Mo Alloys from Pyrophosphate Baths, Electrochimica Acta, 2005, vol. 50, no. 6, pp. 1405–1412.

    Article  Google Scholar 

  15. Santana, R.A.C., Campos, A.R.N., Medeirosv, E.A., Oliveira, A.L.M., Silva, L.M.F., and Prasad, Sh., Studies on Electrodeposition and Corrosion Behavior of a Ni-W-Co Amorphous Alloy, J. Mater. Science, 2007, vol. 42, no. 22, pp. 9137–9144.

    Article  Google Scholar 

  16. Tsyntsaru, N., Belevsky, S., Dikusar, A., and Celis, J.-P., Tribological Behaviour of Electrodeposited Cobalt-Tungsten Coatings: Dependence on Current Parameters, Trans. Inst. Metal Finish., 2008, vol. 86, pp. 301–307.

    Article  Google Scholar 

  17. Tsyntsaru, N., Bobanova, J., Ye, X., Cesiulis, H., Dikusar, A., and Celis, J.-P., Iron-Tungsten Alloys Electrodeposited under Direct Current from Citrate-Ammonia Plating Baths, Surf. Coating Technology, 2009, vol. 203, nos. 20–21, pp. 3136–3141.

    Article  Google Scholar 

  18. Tsyntsaru, N., Cesiulis, H., Bobanova, J., Croitoru, D., Dikusar, A., and Celis, J.-P., Electrodeposition and Tribological Characterization of Nanostructural Co-W and Fe-W Alloys, In Proc. Int. Conf. Balttrib., Kaunas, Lithuania 2009, pp. 259–264.

  19. Tsyntsaru, N., Belevskii, S.S., Volodina, G.F., Bersirova, O.N., Yapontseva, Yu.S., Kublanovskii, V.S., and Dikusar, A.I., Composition, Structure and Corrosion Properties of Coatings of CoW Alloys Electrodeposited under Direct Current, Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 5, p. 312–317.

    Article  Google Scholar 

  20. Bobanova, Zh.I., Dikusar, A.I., Cesiulis, H., Celis, J.-P., Tsyntsaru, N.I., and Prosycevas, I., Micromechanical and Tribological Properties of Nanocrystalline Coatings Electrodeposited from Citrate-Ammonia Solutions, Russian J. Electrochem., 2009, vol. 45, no. 8, pp. 895–901.

    Article  Google Scholar 

  21. Weston, D.P., Shipway, P.H., Harris, S.J., and Cheng, M.K., Friction and Cobalt-Tungsten Alloy Coatings for Replacement of Electrodeposited Chromium, Wear, 2009, vol. 267, pp. 934–943.

    Article  Google Scholar 

  22. Silkin, S.A., Belevskii, S.S., Tsyntsaru, N.I., Shul’man, A.I., Shchuplakov, A.N., and Dikusar, A.I., Influence of Long-Term Operation of Electrolytes on the Composition, Morphology, and Stress-Strain Properties of Surfaces Produced at Deposition of Co-W Coatings from Citrate Solutions, Surf. Eng. Appl. Electrochem., 2009, vol. 45, no. 1, pp. 1–12.

    Article  Google Scholar 

  23. Eisenberg, M., Tobias, C.W., and Wilke, C.R., Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes, J. Electrochem. Soc., 1954, vol. 101, p. 306.

    Article  Google Scholar 

  24. Madore, C., West, A.C., Matlosz, M., and Landolt, D., Design Considerations for a Cylinder Hull Cell with Forced Convection, Electrochim. Acta, 1992, vol. 37, no. 1, p. 69.

    Article  Google Scholar 

  25. Bobanova, Zh.I., Petrenko, V.I., Silkin, S.A., Yushchenko. S.P., and Yakhova, E.A., Electrodeposition of Amorphous Alloys of Co-W. The Role of Hydrodynamic Conditions, Elektron. Obrab. Mater., 2005, no. 6, pp. 86–91.

  26. Fetter, K., Elektrokhimicheskaya kinetika (Electrochemical Kinetics), Moscow; Leningrad: Khimiya, 1967.

    Google Scholar 

  27. Gamburg, Yu.D. and Zaharov, E.N., The Effect of Hydrogen on Amorfization of Iron-Tungsten Alloys Produced by Electrochemical Synthesis, Russian J. Electrochem., 2008, vol. 44, no. 6, pp. 736–740.

    Article  Google Scholar 

  28. Podlaha, E.J. and Landolt, D., Induced Codeposition. II. A Mathematical Model Describing the Electrodeposition of Ni-Mo Alloys, J. Electrochem. Soc., 1996, vol.143, pp. 893–899.

    Article  Google Scholar 

  29. Podlaha, E.J. and Landolt, D., Induced Codeposition. III. Molybdenum Alloys with Nickel, Cobalt and Iron, J. Electrochem. Soc., 1997, vol. 144, no. 5, pp. 1672–1680.

    Article  Google Scholar 

  30. Younes, O. and Gileadi, E., Electroplating of High Tungsten Content Ni / W Alloys, Electrochem. Solid-State Lett., 2000, vol. 3, no. 2, pp. 543–545.

    Article  Google Scholar 

  31. Younes, O., and Gileadi, E., Electroplating of Ni/W Alloys, J. Electrochem. Soc., 2002, vol. 149, no. 2, pp. 100–111.

    Article  Google Scholar 

  32. Younes-Metzler, O., Zhu, L., and Gileadi, E., The Anomalous Codeposition of Tungsten in the Presence of Nickel, Electrochim. Acta, 2003, vol. 48, no. 18, pp. 2551–2562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dikusar.

Additional information

Original Russian Text © S.S. Belevskii, N.I. Tsyntsaru, A.I. Dikusar, 2010, published in Elektronnaya Obrabotka Materialov, 2010, No. 2, pp. 9–18.

About this article

Cite this article

Belevskii, S.S., Tsyntsaru, N.I. & Dikusar, A.I. Electrodeposition of nanocrystalline Co-W coatings from citrate electrolytes under conditions of controlled hydrodynamic: II. The electrodeposition rate and composition of the coatings. Surf. Engin. Appl.Electrochem. 46, 91–99 (2010). https://doi.org/10.3103/S106837551002002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837551002002X

Keywords

Navigation