Structural changes in CЧ-25 cast iron in an amplitude-modulated high-frequency electromagnetic field

  • A. G. Anisovich
  • I. N. Rumyantseva
  • V. F. Bevza
  • E. I. Marukovich
  • V. V. Azharonok
  • S. V. Goncharik
Electrical Processes in Engineering and Chemistry

Abstract

The high-frequency magnetic field influence on changes in the structure and properties of CЧ-25 cast iron obtained by the method of continuous-cycle freeze casting has been studied. It has been found that the structure effects of high-frequency magnetic-pulse action on cast iron are the “healing” of surface defects, perlite dispersion, a decrease in the ferrite content in the structure due to the ferrite-graphite complex transformation into perlite, coarsening and modification of the internal structure of graphite inclusions, and a change in the cementite morphology. The observed structural changes determine the decrease in hardness of automobile parts of the cylinder-piston block.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marukovich, E.I., Bevza, V.F., and Grusha, V.P., Realization of the Concept of Wall Crystallization for Obtaining of High-Quality Hollow Cylindrical Works of Cast Iron, in Materialy, tekhnologii i oborudovanie v proizvodstve, ekspluatatsii, remonte i modernizatsii mashin (Materials, Technologies, and Equipment in Production, Operation, Maintenance, and Modernization of Machines), Novopolotsk, 2007, vol. 1, pp. 33–35.Google Scholar
  2. 2.
    Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: MISIS, 2005.Google Scholar
  3. 3.
    Anisovich, A.G., Structure Formation Process Generalities and Thermodynamic Aspect in Organization of Metal Structure under Unsteady Energy Depositions, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Minsk, 2005.Google Scholar
  4. 4.
    Martin, J.W. and Doherty, R.D., Stability of Microstructure in Metallic Systems, London: Cambridge Univ. Press, 1976; Moscow: Atomizdat, 1978, pp. 247–252.Google Scholar
  5. 5.
    Anisovich, A.G., Pulse Methods of Metal Treatment, Tender, 2006, no. 56, pp. 14–16.Google Scholar
  6. 6.
    Koksharov, S.A., Konstantinov, O.I., Mel’nikov, B.N., and Moryganov, A.P., Magnetic Field Influence on the State of Solutions of Reactive Dyes, Zh. Prikl. Khim., 1990, vol. 63, no. 3, pp. 565–571.Google Scholar
  7. 7.
    Bingi, V.N. and Savin, A.V., Physical Problems of Weak Magnetic Field Influence on Biological Systems, Usp. Fiz. Nauk, 2003, vol. 173, no. 3, pp. 265–300.CrossRefGoogle Scholar
  8. 8.
    Gorodetskaya, E.A., Spiridovich, E.V., Korevko, I.A., Azharonok, V.V., Filatova, I.I., and Nekrashevich, Ya.I., Influence of Plasma-Radio-Wave Treatment on the Sowing Properties of Seeds, Dokl. Nats. Akad. Nauk Belarusi, 2007, vol. 51, no. 6, pp. 256–262.Google Scholar
  9. 9.
    Azharonok, V.V., Filatova, I.I., Voshchula, I.V., Dlugunovich, V.A., Tsariuk, O.V., and Gorzhanova, T.N., Change of Optic Properties of Paper under the Influence of the Magnetic Component of a High-Frequency Electromagnetic Field, Zh. Prikl. Spektrosk., 2007, vol. 74, no. 4, pp. 421–426.Google Scholar
  10. 10.
    Persidskaya, A.Yu., Kuzeev, I.P., and Antipin, V.A., On the Influence of Pulse Magnetic Field on the Mechanical Properties of Polymer Fibers, Khim. Fiz., 2002, vol. 21, no. 2, pp. 90–98.Google Scholar
  11. 11.
    Gul’, V.E., Khanchich, O.A., and Savchenko, N.A., The Homogeneous Magnetic Field Influence on Thermotropic Liquid-Crystal Copolymer of Hydroxybenzoic Acid and Ethylene Terephthalate, Mekh. Kompoz. Mater. Konstruktsii, 1995, vol. 1, no. 2, pp. 124–128.Google Scholar
  12. 12.
    Schastlivtsev, V.M., Romashev, L.N., Yakovleva, I.L., and Sadovskii, V.D., Electron Microscope Investigation of the Structure of Martensite Crystals Nucleated under the Action of Pulse Magnetic Field, Fiz. Met. Metalloved., 1981, vol. 51, no. 4, pp. 773–782.Google Scholar
  13. 13.
    Zdor, G.N., Anisovich, A.G., and Yaskovich, A.G., Application of Pulse Magnetic Field for Improvement of the Mechanical Properties of Nonferrous Metal Alloys, Probl. Mashinostr. Nadezhn. Mashin, 2004 no. 5, pp. 65–70.Google Scholar
  14. 14.
    Malygin, B.V., Magnitnoe uprochnenie instrumenta i detalei mashin (Magnetic Hardening of Tools and Machine Parts), Moscow: Mashinostroenie, 1989.Google Scholar
  15. 15.
    Agapova, E.V., Gundyrev, V.M., and Sidorov, E.V., About Structural Changes in the YuNDK35T5AA Alloy upon Magnetic Annealing. Fiz. Met. Metalloved., 2006, vol. 102, no. 2, pp. 178–183 [Phys. Met. Metallogr. (Engl. Transl.), vol. 102, no. 2, p. 163].Google Scholar
  16. 16.
    Kaletina, Yu.V., Fokina, E.A., and Schastlivtsev, V.M., Effect of Pulsed and DC Magnetic Fields on the Martensitic Transformation in Alloys with Isothermal Kinetics., Fiz. Met. Metalloved., 2005, vol. 99, no. 1, pp. 31–37 [Phys. Met. Metallogr. (Engl. Transl.), vol. 99, no. 1, p. 26].Google Scholar
  17. 17.
    Montgomery, D.B., Poluchenie sil’nykh magnitnykh polei s pomoshch’yu solenoidov (Obtaining of Strong Magnetic Fields by Solenoids), Moscow: Mir, 1971 (Russian translation).Google Scholar
  18. 18.
    Gvozdev, A.G., Borodin, I.P., Gvozdeva, L.I., Sushkova, T.V., and Pakhomov, A.A, Study of the Influence of Treatment in a Pulse Magnetic Field on the Properties of 4Kh5MF1S Steel, Materialy V Mezhdunarodnoi nauchnoi konferentsii “Prochnost’ i razrushenie materialov i konstruktsii” (Proc. V Int. Sci. Conf. on Strength and Damage of Materials and Structures), Orenburg, 2008, vol. 1, pp. 370–373.Google Scholar
  19. 19.
    Zdor, G.N., Anisovich, A.G., Shimanovich, V.D., Azharonok, V.V., and Dresvin, S.V., Transformation of Structure and Properties of Beryllium Bronze under the Influence of High-Frequency Magnetic Field, Izv. Ross. Akad. Nauk, Ser.: Met., 2003, no. 4, pp. 100–105.Google Scholar
  20. 20.
    Maslovskii, V.M., On the Influence of Weak Magnetic Field on Structure of Condensed Media, Materialy IV Mezhdunarodnogo nauchno-tekhnicheskogo seminara po netraditsionnym tekhnologiyam (Proc. IV Int. Sci.-Tech. Seminar on Unconventional Technologies), Botevgrad, Sofiya-Gor’kii, 1989, pp. 5–14.Google Scholar
  21. 21.
    Gorelik, S.S., Rastorguev, L.N., and Skakov, Yu.A., Rentgenograficheskii i elektronno-opticheskii analiz. Prilozhenie (Roentgenographic and Electron-Optical Analysis. Supplement), Moscow: Metallurgiya, 1970.Google Scholar
  22. 22.
    Wasserman, G. and Grewen, J., Tekstury metallicheskikh materialov (Texture of Metal Materials), Moscow: Metallurgiya, 1969 (Translation from German).Google Scholar
  23. 23.
    Fokina, E.A., Kaletina, Yu.V., and Schastlivtsev, V.M., Specific Features of the Martensitic Transformation of Deformed Austenite in the 50N26 Alloy upon Cooling and Magnetic Treatment, Fiz. Met. Metalloved., 2006, vol. 101, no. 4, pp. 381–391 [Phys. Met. Metallogr. (Engl. Transl.), vol. 101, no. 4, p. 355].Google Scholar
  24. 24.
    Pustovoit, V.N. and Sorochkina, O.Yu., The Influence of External Magnetic Field in the Temperature Range of Martensitic Transformation Superplasticity, Bernchteinovskie chteniya “Termoelektricheskaya obrabotka metallicheskikh materialov” (Bernstein Readings on Thermomechanical Treatment of Metal Materials), Moscow, 2004, p. 32.Google Scholar
  25. 25.
    Klevtsova, N.A., Klevtsov, G.V., and Fesenyuk, M.V., The Influence of Magnetic Field and Low Temperature on Martensitic Transformations in the Fe-Cr-Mn-V Alloy, Materialy V Mezhdunarodnoi nauchnoi konferentsii “Prochnost’ i razrushenie materialov i konstruktsii” (Proc. V Int. Sci. Conf. on Strength and Damage of Materials and Structures), Orenburg, 2008, vol. 1, pp. 16–20.Google Scholar
  26. 26.
    Prokhorova, A.M., Fizicheskii entsiklopedicheskii slovar’ (Physical Encyclopedic Dictionary), Sovetskaya entsiklopediya, Ed., Moscow, 1983, pp. 384–386.Google Scholar
  27. 27.
    Drapkin, B.M. and Kimstach, G.M., Magnetic Properties of Cementite in Iron-Carbon Steels, Fiz. Met. Metalloved., 1995, vol. 80, no. 2, pp. 163–166.Google Scholar
  28. 28.
    Makarova, T.L., Magnetic Properties of Carbon Structures. Review), Fiz. Tekh. Poluprovodn., 2004, vol. 38, no. 4, pp. 641–664.Google Scholar
  29. 29.
    Larikov, L.N., Zalechivanie defektov v metallakh (Healing of Defects in Metals), Kiev: Naukova Dumka, 1980.Google Scholar
  30. 30.
    Larikov, L.N., Fal’chenko, V.M., and Gertsriken, S.D., On the Influence of Pulse Magnetic Field on Atom Mobility in Iron and Aluminum, Dokl. Akad. Nauk SSSR, 1978, vol. 239, no. 2, pp. 312–314.Google Scholar
  31. 31.
    Verazhkovskaya, M.A., Petrov, S.S., and Pokoev, A.V., Heterodiffusion of Al in α-Fe in a Pulse Magnetic Field, Pis’ma Zh. Tekh. Fiz., 2007, vol. 33,issue 22, pp. 43–47.Google Scholar
  32. 32.
    Geguzin, Ya.E., Makroskopichekie defekty v kristallakh (Macroscopic Defects in Crystals), Moscow: Gos. Nauchno-Tekh. Izd. Liter. Chern. Tsvetn. Metall., 1962.Google Scholar
  33. 33.
    Tofpenets, R.L., Sokolov, Yu.V., Zaluzhnyi, G.I., and Popok, D.A, Procedure and Kinetics of Pore Healing at TCT of Sprayed Coatings, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Tekh. Navuk, 1999, no. 2, pp. 10–13.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • A. G. Anisovich
    • 1
  • I. N. Rumyantseva
    • 1
  • V. F. Bevza
    • 2
  • E. I. Marukovich
    • 2
  • V. V. Azharonok
    • 3
  • S. V. Goncharik
    • 3
  1. 1.State Scientific Institution, Physical-Technical InstituteNational Academy of Sciences of BelarusMinskRepublic of Belarus
  2. 2.State Scientific Institution, Institute of Metal TechnologyNational Academy of Sciences of BelarusMogilevRepublic of Belarus
  3. 3.State Scientific Institution, Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskRepublic of Belarus

Personalised recommendations