Skip to main content
Log in

On the electric field distribution in plane and axisymmetrical partially charged stationary jets

  • Electrical Processes in Engineering and Chemistry
  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This work is divided into two parts: a theoretical one including a literature review and a comparison of the calculations with experiments, whose installation diagrams are given. The methods of graphical and comparative analysis are applied for treatment of the data. A theoretical model of the charge formation in thin prebreakdown and plasma jets is described. A system of macroscopic equations of the thermal electrohydrodynamics of the phenomena under study is written. The calculations and their comparison with the experiments are carried out according to the obtained solutions of these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apfel’baum, M.S., Distribution of Electric Fields in Certain Types of Stationary Weakly Ionizing Jets, Elektron. Obrab. Mater., 2007, no. 1, pp. 31–46 [Surf. Eng. Appl. Electrochem. (Engl. Transl.), vol. 43 no. 1, p. 24].

  2. Yantovskii, E.I. and Apfel’baum, M.S., On Pumping Action of a Thin High-Voltage Electrode in Weakly Conducting Dielectric Liquid, Zh. Tekh. Fiz., 1980, vol. 50,issue 7, pp. 1511–1520.

    Google Scholar 

  3. Plumley, H.J., Conduction of Electricity by Dielectric Liquids at High Field Strength, Phys. Rev., 1941, vol. 50, no. 2, pp. 200–207.

    Article  Google Scholar 

  4. Petrichenko, N.A., Thermal Phenomena Accompanying Electric Wind in Liquids, Elektron. Obrab. Mater., 1973, no. 6, pp. 44–45.

  5. Lyubimov, G.A., On Condition of the Breakdown of a Near-Electrode Layer in a Flow of Ionized Gas, Zh. Prikl. Mat. Tekh. Fiz., 1973, no. 3 pp. 16–23.

  6. Stishkov, Yu.K. and Ostapenko, A.A., Elektrogidrodinamicheskie techeniya v zhidkikh dielektrikakh (Electrohydrodynamic Flows in Liquid Dielectrics), Leningrad: LGU, 1989.

    Google Scholar 

  7. Bologa, M.K., Grosu, F.P., and Kozhuhar’, I.A., Elektrokonvektsiya i teploobmen (Electroconvection and Heat Exchange), Kishinev: Shtiintsa, 1977.

    Google Scholar 

  8. Gogosov, V.V., Polyanskii, V.A., Semenova, I.P., and Yakubenko, A.A., Equations of Electrohydrodynamics and Transfer Coefficients in a Strong Electric Field, Izv. Akad. Nauk SSSR, Ser.: Mekh. Zhidkosti i Gaza, 1969, no. 2, pp. 31–45.

  9. Onsager, L., Deviation from Ohm’s Law in Weak Electrolytes, J. Chem. Phys., 1934, vol. 2, no. 9, pp. 599–615.

    Article  Google Scholar 

  10. Landau, L.D. and Lifshits, E.M., Mekanika sploshnykh sred (Mechanics of Continua) Moscow: GITTL, 1954.

    Google Scholar 

  11. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continua), Moscow: GITTL, 1957.

    Google Scholar 

  12. Boyarevich, V.V., Freiberg, Ya.Zh., Shilova, E.I., and Shcherbinin, E.E., Elektrovikhrevye techeniya (Electric Vortex Flows), Riga: Zinatne, 1985.

    Google Scholar 

  13. Sedov, L.I., Mekhanika sploshnoi sredy (Mechanics of Continuum), Moscow: Nauka, 1994, vol. 1.

    Google Scholar 

  14. Frenkel’, Ya.I., To the Theory of Electric Breakdown in Dielectrics and Electronic Semiconductors, Zh. Eksp. Teor. Fiz., 1938, issue 12, pp. 1293–1301.

  15. Levich, V.G., Vdovin, Yu.A., and Myamlin, V.A., Kurs teoreticheskoi fiziki (Course of Theoretical Physics), Moscow: Nauka, 1971, vol. 2.

    Google Scholar 

  16. Apfelbaum, M.S., The Prebreakdown Electrohydrodynamic Equations for Liquid Insulators, Proc. 7th Int. Conf. on Modern Problems of Electrophysics and Electrohydrodynamics of Liquids, St. Petersburg, 2003, pp. 9–13.

  17. Damaskin, B.B., and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction into Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1975.

    Google Scholar 

  18. Lawton, J. and Weinberg, F., Electrical Aspects of Combustion, Oxford: Clarendon Press, 1969; Moscow: Energiya, 1976.

    Google Scholar 

  19. Gibbings, J.C. and Mackey, A.M., Charge Convection in Electrically Stressed Low-Conductivity Liquids, Part 3: Sharp Electrodes, J. Electrostatics, 1981, vol. 11, pp. 119–134.

    Article  Google Scholar 

  20. Khrapak, A.G., Fortov, V.E., and Yakubov, I.T., Fizika neideal’noi plazmy (Physics of Nonideal Plasma), Moscow: Fizmatlit, 2004.

    Google Scholar 

  21. Usachev, V.K., Stavrov, Yu.P., and Tambovtsev, V.I., Electrokinetic Phenomenon in a Jet of Ionized Combustion Products, Tezisy dokladov nauchno-prakticheskogo seminara po elektrofizike goreniya (Proc. Sci. Workshop on Electrophysics of Combustion), Karaganda, 1985, pp. 66–67.

  22. Apfelbaum, M.S., The Space Electric Field Distribution in Thermoionization Strong Jets, Proc. 15th Int. Conf. on MHD Energy Conversion and 6th Workshop on Magneto-Plasma Aerodynamics, Moscow, 2005, vol. 1, pp. 196–197.

    Google Scholar 

  23. Loistyanskii, L.G., Laminarnyi pogranichnyi sloi (Laminar Boundary Layer), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1962.

    Google Scholar 

  24. Tikhodeev, N.N., Differential Equation of Unipolar Corona and Its Integration in Simplest Cases, Zh. Tekh. Fiz., 1955, vol. XXV,issue 8, pp. 1449–1457.

    Google Scholar 

  25. Zhakin, A.I., On Electroconvective Jets in Liquid Dielectrics, Izv. Akad. Nauk SSSR, Ser.: Mekh. Zhidkosti i Gaza, 1984, no. 6, pp. 13–19.

  26. W. Stiller, Arrhenius Equation and Nonequilibrium Kinetics, Leipzig: Teubner-Verlag, 1989; Moscow: Mir, 2000.

    Google Scholar 

  27. Tikhodeev, N.N., Interrelation of Current-Voltage Characteristics of Corona Discharge at Constant Voltage for Various Systems with Wires, Izv. Ross. Akad. Nauk, Ser.: Energetika, 2002, no. 2, pp. 85–95.

  28. Loistyanskii, L.G., Mekhanika zhidosti i gaza (Mechanics of Liquid and Gas), Moscow: Nauka, 1978.

    Google Scholar 

  29. Apfel’baum, M.S., On One Technique of Calculation of the Characteristics of Electrohydrodynamic Flows and Pumps, Elektron. Obrab. Mater., 1990, no. 6, pp. 39–42.

  30. Bortnikov, Yu.S. and Rubashov, I.B., Electric Gas-Dynamic Effects and Their Application, Magn. Gidrodinamika, 1975, no. 1, pp. 23–34.

  31. Ostroumov, G.A., Vzaimodeistvie elektricheskikh i gidrodinamicheskikh polei (Interaction of Electric and Hydrodynamic Fields), Moscow: Nauka, 1979.

    Google Scholar 

  32. Adamchevskii, I., Elektricheskaya provodimost’ zhidkikh dielektrikov (Electric Conductivity of Liquid Dielectrics), Leningrad: Energiya, 1972.

    Google Scholar 

  33. Sedov, L.I., Metody podobiya i razmernosti v mekhanike (Methods of Similarity and Dimensionality in Mechanics), Moscow: Nauka, 1977.

    Google Scholar 

  34. Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1964; Moscow: Nauka, 1974.

    Google Scholar 

  35. Apfel’baum, M.S., The Problem of Point Electric Explosion of Weakly Conducting Fluids, Elektron. Obrab. Mater., 2000, no. 6, pp. 31–42.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Apfel’baum.

Additional information

Original Russian Text © M.S. Apfel’baum, 2009, published in Elektronnaya Obrabotka Materialov, 2009, No. 2, pp. 29–46.

About this article

Cite this article

Apfel’baum, M.S. On the electric field distribution in plane and axisymmetrical partially charged stationary jets. Surf. Engin. Appl.Electrochem. 45, 102–115 (2009). https://doi.org/10.3103/S1068375509020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375509020057

Keywords

Navigation