Skip to main content
Log in

Assessment of the Hydrological Responces to Land Use Changes in Wadi Ouahrane Watershed, Algeria

  • COMMUNICATIONS
  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Rainfall-runoff modeling plays a crucial role in determining the regular water balance. Modifications in land use and land cover (LULC) significantly impact on the hydrological response of watersheds. The study aims to analyze the effect of land use change on river runoff with the use of hydrological modeling in the Wadi Ouahrane watershed in northwestern Algeria. The study was conducted for the period from 1987 to 2017. According to the LULC change study, cultivated land and built-up areas have increased, whereas forest and grassland areas have decreased. Sensitivity evaluation has shown that the CN (curve number) is the most important factor affecting the watershed hydrology. The Nash–Sutcliffe (NSE) and \(R^{2}\) efficiency values for the Wadi Ouahrane watershed were 0.76–0.82 and 0.86–0.91 for the calibration period and 0.72–0.74 and 0.81–0.83 for the validation one, respectively. The assessment of the HEC-HMS response to the LULC change showed that the peak discharge for 2017 increased by 68% relative to the 1987 peak discharge. This research has improved the knowledge of the relationship between land use change and hydrological regimes in the Wadi Ouahrane watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. A. Amini, T. M. Ali, A. H. B. Ghazali, A. A. Aziz, and S. M. Akib, "Impacts of Land-use Change on Streamflows in the Damansara Watershed, Malaysia," Arab. J. Sci. Eng., 36 (2011).

    Article  Google Scholar 

  2. M. Azam, H. S. Kim, and S. J. Maeng, "Development of Flood Alert Application in Mushim Stream Watershed Korea," Int. J. Disaster Risk Reduct., 21 (2017).

    Article  Google Scholar 

  3. Y. Bai, Z. Zhang, and W. Zhao, "Assessing the Impact of Climate Change on Flood Events Using HEC-HMS and CMIP5," Water, Air, and Soil Pollut., 230 (2019).

    Article  CAS  Google Scholar 

  4. A. Benkhaled and B. Remini, "Variabilite Temporelle de la Concentration en Sediments et Phenomene Hysteresis dans le Bassin de Oued Wahrane (Algerie)," Hydrol. Sci. J., 48 (2003).

    Article  Google Scholar 

  5. L. Breuer, J. A. Huisman, P. Willems, H. Bormann, A. Bronstert, B. F. W. Croke, H. G. Frede, T. Graff, L. Hubrechts, A. J. Jakeman, G. Kite, J. Lanini, G. Leavesley, D. P. Lettenmaier, G. Lindstrom, J. Seibert, M. Sivapalan, and N. R. Viney, "Assessing the Impact of Land Use Change on Hydrology by Ensemble Modeling (LUCHEM). I: Model Intercomparison with Current Land Use," Adv. Water Resour., 32 (2009).

    Article  ADS  Google Scholar 

  6. L. Candela, K. Tamoh, G. Olivares, and M. Gomez, "Climate and Land Use Changes on Streamflow and Subsurface Recharge in the Fluvi Basin, Spain," Water (Switzerland), 8 (2016).

    Article  Google Scholar 

  7. A. Derdour and A. Bouanani, "Coupling HEC-RAS and HEC-HMS in Rainfall–Runoff Modeling and Evaluating Floodplain Inundation Maps in Arid Environments: Case Study of Ain Sefra City, Ksour Mountain, SW of Algeria," Environ. Earth Sci., 78 (2019).

    Article  Google Scholar 

  8. A. Derdour, A. Bouanani, and K. Babahamed, "Hydrological Modeling in Semi-arid Region Using HEC-HMS Model. Case Study in Ain Sefra Watershed, Ksour Mountains (SW-Algeria)," J. Fundam. Appl. Sci., 9 (2017).

    Article  Google Scholar 

  9. Y. Elmeddahi, H. Mahmoudi, A. Issaadi, M. F. A. Goosen, and R. Ragab, "Evaluating the Effects of Climate Change and Variability on Water Resources: A Case Study of the Cheliff Basin in Algeria," Amer. J. Eng. Appl. Sci., 9 (2016).

    Article  Google Scholar 

  10. Y. Elmeddahi, M. Remaoun, S. Abaidia, and A. Issadi, "Variabilite Climatique et Detection de Tendance dans la Relation Pluie-debit pour l’evaluation des Risques de Sécheresse Dans le Bassin de l’Oued Ouahrane (Algerie)," Tech. Sci. Methodes, 111 (2016).

    Article  Google Scholar 

  11. A. D. Feldman, Hydrologic Modeling System Technical Reference Manual (2000).

  12. J. V. Garg, S. P. Aggarwal, P. K. Gupta, B. R. Nikam, P. K. Thakur, S. K. Srivastav, and A. Senthil Kumar, "Assessment of Land Use Land Cover Change Impact on Hydrological Regime of a Basin," Environ. Earth Sci., 76 (2017).

    Article  Google Scholar 

  13. J. A. A. Gessesse, A. M. Melesse, F. F. Abera, and A. Z. Abiy, "Modeling Hydrological Responses to Land Use Dynamics, Choke, Ethiopia," Water Conserv. Sci. Eng., 4 (2019).

    Article  Google Scholar 

  14. S. Hu and P. Shrestha, "Examine the Impact of Land Use and Land Cover Changes on Peak Discharges of a Watershed in the Midwestern United States Using the HEC-HMS Model" Pap. Appl. Geogr., 6 (2020).

    Article  Google Scholar 

  15. A. Kavian, S. Hoseinpoor Sabet, K. Solaimani, and B. Jafari, "Simulating the Effects of Land Use Changes on Soil Erosion Using RUSLE Model," Geocarto Int., 32 (2017).

    Article  ADS  Google Scholar 

  16. F. Laouacheria and R. Mansouri, "Comparison of WBNM and HEC-HMS for Runoff Hydrograph Prediction in a Small Urban Catchment," Water Resour. Manag., 29 (2015).

    Article  Google Scholar 

  17. D. Legesse, C. Vallet-Coulomb, and F. Gasse, "Hydrological Response of a Catchment to Climate and Land Use Changes in Tropical Africa: Case Study South Central Ethiopia," J. Hydrol., 275 (2003).

    Article  ADS  Google Scholar 

  18. A. Malekian, B. Choubin, J. Liu, and F. Sajedi-Hosseini, "Development of a New Integrated Framework for Improved Rainfall–Runoff Modeling under Climate Variability and Human Activities," Water Resour. Manag., 33 (2019).

    Article  Google Scholar 

  19. D. Miller, H. Kim, T. R. Kjeldsen, J. Packman, S. Grebby, and R. Dearden, "Assessing the Impact of Urbanization on Storm Runoff in a Peri-urban Catchment Using Historical Change in Impervious Cover," J. Hydrol., 515 (2014).

    Article  ADS  Google Scholar 

  20. T. C. Moraes, dos V. J. Santos, M. L. Calijuri, and F. T. P. Torres, "Effects on Runoff Caused by Changes in Land Cover in a Brazilian Southeast Basin: Evaluation by HEC-HMS and HEC-GEOHMS," Environ. Earth Sci., 77 (2018).

    Article  Google Scholar 

  21. Z. Moumen, A. Jalouni, E. L. Hassani, A. Lahrach, and A.-A. Chaouni, "Comparative Study of the Semi-distributed Model HEC-HMS with the Global Gr4j Model Applied in the Innaouene Basin (Morocco)," Amer. J. Innov. Res. Appl. Sci., 5 (2017).

  22. J. Nash and I. Sutcliffe, "River Flow Forecasting through Conceptual Models. Part I. A Discussion of Principals," J. Hydrol., 10 (1970).

    Article  ADS  Google Scholar 

  23. S. Natarajan and N. Radhakrishnan, "Assessment of Rainfall–Runoff due to the Impacts of Land-use Changes by Integrated Geospatial Empirical Approach: Study on Koraiyar Basin, Tiruchirappalli City, India," J. Indian Soc. Remote Sens., 49 (2021).

    Article  Google Scholar 

  24. N. Nyaupane, S. Mote, M. Bhandari, A. Kalra, and S. Ahmad, "Rainfall-runoff Simulation Using Climate Change Based Precipitation Prediction in HEC-HMS Model for Irwin Creek Charlotte, North Carolina," World Environ. Water Resour. Congr., 1 (2018).

  25. D. N. Olayinka and H. E. Irivbogbe, "Estimation of Hydrological Outputs Using HEC-HMS and GIS Niger," J. Environ. Sci. Technol., 1 (2017).

    Article  Google Scholar 

  26. M. A. M. Razi, J. Ariffin, W. Tahir, and N. A. M. Arish, "Flood Estimation Studies Using Hydrologic Modeling System (HEC-HMS) for Johor River, Malaysia," J. Appl. Sci., 11 (2010).

  27. H. Razmkhah, "Comparing Performance of Different Loss Methods in Rainfall–Runoff Modeling," Water Resour., 43 (2016).

    Article  CAS  Google Scholar 

  28. A. L. M. Rodrigues, G. B. Reis, M. T. dos Santos, D. D. da Silva, V. J. dos Santos, J. de Siqueira Castro, and M. L. Calijuri, "Influence of Land Use and Land Cover’s Change on the Hydrological Regime at a Brazilian Southeast Urbanized Watershed," Environ. Earth Sci., 78 (2019).

    Article  ADS  Google Scholar 

  29. M. A. Shahid, P. Boccardo, M. Usman, A. Albanese, and M. U. Qamar, "Predicting Peak Flows in Real Time through Event Based Hydrologic Modeling for a Trans-Boundary River Catchment," Water Resour. Manag., 31 (2017).

    Article  Google Scholar 

  30. I. D. Skhakhfa and L. Ouerdachi, "Hydrological Modelling of Wadi Ressoul Watershed, Algeria, by HEC-HMS Model," J. Water L. Dev., 31 (2016).

    Article  Google Scholar 

  31. USACE, Hydrologic Modeling System User’s Manual (Hydrologic Engineering Center, 2018).

  32. USDA, Urban Hydrology for Small Watersheds (1986).

  33. S. M. Z. Younis and A. Ammar, "Quantification of Impact of Changes in Land Use-Land Cover on Hydrology in the Upper Indus Basin, Pakistan," Egypt. J. Remote Sens. Sp. Sci., 21 (2018).

    Article  Google Scholar 

  34. M. Zare and M. Pakparvar, "Optimizing the Runoff Estimation with HEC-HMS Model Using Spatial Evapotranspiration by the SEBS Mode," Water Resour. Manag., 35 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Allali.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 11, pp. 109-119. https://doi.org/10.52002/0130-2906-2023-11-109-119.

Publisher’s Note. Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allali, H., Elmeddahi, Y., Badni, N. et al. Assessment of the Hydrological Responces to Land Use Changes in Wadi Ouahrane Watershed, Algeria. Russ. Meteorol. Hydrol. 48, 1084–1092 (2023). https://doi.org/10.3103/S1068373923120099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923120099

Keywords

Navigation