Skip to main content
Log in

Connection of Wildfires in Russian Regions to Atmospheric Blockings

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Results of the analysis of wildfires in Russian regions using satellite data for 2000–2021 are presented. The results indicate a predominant increase in the number of intense fires in Russia, which has been especially noticeable in recent years. Using reanalysis data, a significant correlation between wildfires in Russia and atmospheric blocking has been revealed. An integral blockings index, whose value can reach and exceed 10% for fire seasons in Russian regions from April to October, was used to characterize atmospheric blocking. It has been found that an increase in the integral blockings index by 1% corresponds to an increase in the number of forest fires in Russia by 14%. According to the estimates, the contribution to the variance of interannual change in the number of wildfires associated with atmospheric blockings reaches \(\sim\)40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. V. G. Bondur, O. S. Voronova, E. V. Cherepanova, M. N. Tsidilina, and A. L. Zima, "Spatiotemporal Analysis of Long-term Wildfires and Trace Gas and Aerosol Emissions in Russia Based on Satellite Data," Issledovanie Zemli iz Kosmosa, No. 4 (2020).

  2. V. G. Bondur, I. I. Mokhov, O. S. Voronova, and S. A. Sitnov, "Satellite Monitoring of Siberian Wildfires and Their Effects: Features of 2019 Anomalies and Trends of 20-Year Changes," Dokl. Akad. Nauk, No. 1, 492 (2020) [Dokl. Earth Sci., No. 1, 492 (2020)].

  3. Second Roshydromet Assessment Report on Climate Change and Its Consequences in the Russian Federation (Roshydromet, Moscow, 2014) [in Russian].

  4. A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, "Influence of Ground and Peat Fires on CO2 Emissions into the Atmosphere," Dokl. Akad. Nauk, No. 4, 459 (2014) [Dokl. Earth Sci., No. 2, 459 (2014)].

  5. S. P. Malevskii-Malevich, E. K. Mol’kentin, E. D. Nadezhina, A. A. Semioshina, I. A. Sall’, E. I. Khlebnikova, and O. B. Shklyarevich, "Analysis of Changes in Fire-hazard Conditions in the Forests in Russia in the 20th and 21st Centuries on the Basis of Climate Modeling," Meteorol. Gidrol., No. 3 (2007) [Russ. Meteorol. Hydrol., No. 3, 32 (2007)].

    Article  Google Scholar 

  6. I. I. Mokhov, "Climate Change: Causes, Risks, Consequences, and Problems of Adaptation and Regulation," Vestnik Akad. Nauk, No. 1, 92 (2022) [Her. Russ. Acad. Sci., 92 (2022)].

    Article  Google Scholar 

  7. I. I. Mokhov, V. G. Bondur, S. A. Sitnov, and O. S. Voronova, "Satellite Monitoring of Wildfires and Emissions into the Atmosphere of Combustion Products in Russia: Relation to Atmospheric Blockings," Dokl. Akad. Nauk, No. 2, 495 (2020) [Dokl. Earth Sci., No. 2, 495 (2020)].

  8. I. I. Mokhov, J.-L. Dufresne, H. Le Treut, V. A. Tikhonov, and A. V. Chernokulsky, "Changes in Drought and Bioproductivity Regimes in Land Ecosystems in Regions of Northern Eurasia Based on Calculations Using a Global Climatic Model with Carbon Cycle," Dokl. Akad. Nauk, No. 6, 405 (2005) [Dokl. Earth Sci., No. 9, 405 (2005)].

  9. I. I. Mokhov, S. A. Sitnov, M. N. Tsidilina, and O. S. Voronova, "Relation between Pyrogenic NO2 Emissions from Wildfires in Russia and Atmospheric Blocking Events," Optika Atmos. Okeana, No. 6, 34 (2021) [Atmos. Ocean. Opt., No. 6, 34 (2021)].

    Article  Google Scholar 

  10. I. I. Mokhov and A. V. Timazhev, "Atmospheric Blocking and Changes in Its Frequency in the 21st Century Simulated with the Ensemble of Climate Models," Meteorol. Gidrol., No. 6 (2019) [Russ. Meteorol. Hydrol., No. 6, 44 (2019)].

    Article  Google Scholar 

  11. I. I. Mokhov and A. V. Chernokulsky, "Regional Model Assessments of Forest Fire Risks in the Asian Part of Russia under Climate Change," Geografiya i Prirodnye Resursy, No. 2 (2010) [Geogr. Nat. Resources, No. 2, 31 (2010)].

    Article  Google Scholar 

  12. I. I. Mokhov, A. V. Chernokulsky, and I. M. Shkolnik, "Regional Model Assessments of Fire Risks under Global Climate Changes," Dokl. Akad. Nauk, No. 6, 411 (2006) [Dokl. Earth Sci., No. 9, 411 (2006)].

  13. S. A. Sitnov and I. I. Mokhov, "Anomalous Transboundary Transport of the Products of Biomass Burning from North American Wildfires to Northern Eurasia," Dokl. Akad. Nauk, No. 3, 475 (2017) [Dokl. Earth Sci., No. 1, 475 (2017)].

  14. S. A. Sitnov and I. I. Mokhov, "Comparative Analysis of the Characteristicsof Active Fires in the Boreal Forests of Eurasia and North America Based on Satellite Data," Issledovanie Zemli iz Kosmosa, No. 2 (2018).

  15. S. A. Sitnov, I. I. Mokhov, and G. I. Gorchakov, "The Link between Smoke Blanketing of European Russia in Summer 2016, Siberian Wildfires and Anomalies of Large-Scale Atmospheric Circulation," Dokl. Akad. Nauk, No. 4, 472 (2017) [Dokl. Earth Sci., No. 2, 472 (2017)].

  16. A. Z. Shvidenko and D. G. Shchepashchenko, "Climate Change and Wildfires in Russia," Lesovedenie, No. 5 (2013).

  17. A. Z. Shvidenko, D. G. Shchepashchenko, E. A. Vaganov, A. I. Sukhinin, Sh. Sh. Maksyutov, I. McCallum, and I. P. Lakyda, "Impact of Wildfire in Russia between 1998–2010 on Ecosystems and the Global Carbon Budget," Dokl. Akad. Nauk, No. 4, 441 (2011) [Dokl. Earth Sci., No. 2, 441 (2011)].

  18. I. M. Shkol’nik, E. K. Mol’kentin, E. D. Nadezhina, E. I. Khlebnikova, and I. A. Sall, "Temperature Extremes and Wildfires in Siberia in the 21st Century: The MGO Regional Cimate Model Simulation," Meteorol. Gidrol., No. 3 (2008) [Russ. Meteorol. Hydrol., No. 3, 33 (2008)].

    Article  Google Scholar 

  19. J. T. Abatzoglou and A. P. Williams, "Impact of Anthropogenic Climate Change on Wildfire across Western US Forests," Proc. Nat. Acad. Sci. USA, No. 42, 113 (2016).

    Article  Google Scholar 

  20. M. O. Andreae and P. Merlet, "Emission of Trace Gases and Aerosols from Biomass Burning," Glob. Biogeochem. Cycles, No. 4, 15 (2001).

    Article  Google Scholar 

  21. S. A. Bartalev, V. A. Egorov, E. A. Loupian, and I. A. Uvarov, "Multiyear Circumpolar Assessment of the Area Burnt in Boreal Ecosystems Using SPOT-VEGETATION," Int. J. Remote Sens., 28 (2007).

    Article  Google Scholar 

  22. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (Cambridge Univ. Press, Cambridge, New York, 2013).

    Google Scholar 

  23. Climate Change 2021: The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou (Cambridge Univ. Press, 2021).

  24. A. V. Eliseev, I. I. Mokhov, and A. V. Chernokulsky, "An Ensemble Approach to Simulate CO2 Emissions from Natural Fires," Biogeosciences, No. 12, 11 (2014).

    Article  Google Scholar 

  25. M. A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, "MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets," Remote Sens. Environ., 114 (2010).

    Article  Google Scholar 

  26. L. Giglio, J. Descloitres, C. O. Justice, and Y. J. Kaufman, "An Enhanced Contextual Fire Detection Algorithm for MODIS," Remote Sens. Environ., 87 (2003).

    Article  Google Scholar 

  27. L. Giglio, W. Schroeder, and C. O. Justice, "The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products," Remote Sens. Environ., 178 (2016).

    Article  Google Scholar 

  28. P. Ya. Groisman, B. G. Sherstyukov, V. N. Razuvaev, R. W. Knight, J. G. Enloe, N. S. Stroumentova, P. H. Whitfield, E. Forland, I. Hannsen-Baueret, H. Tuomenvirta, H. Aleksandersson, A. V. Mescherskaya, and T. R. Karl, "Potential Forest Fire Danger over Northern Eurasia: Changes during the 20th Century," Glob. Planet. Change, 56 (2007).

  29. E. S. Kasischke, E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. F. French, A. I. Sukhinin, J. H. Hewson, and B. J. Stockset, "Influences of Boreal Fire Emissions on Northern Hemisphere Atmospheric Carbon and Carbon Monoxide," Glob. Biogeochem. Cycles, 19 (2005).

  30. H. Lejenas and H. Okland, "Characteristics of Northern Hemisphere Blocking as Determined from a Long Time Series of Observational Data," Tellus A, 35 (1983).

    Article  Google Scholar 

  31. A. S. MacDougall, K. S. McCann, G. Gellner, and R. Turkington, "Diversity Loss with Persistent Human Disturbance Increases Vulnerability to Ecosystem Collapse," Nature, 494 (2013).

    Article  Google Scholar 

  32. J. R. Marlon, P. J. Bartlein, D. G. Gavin, C. J. Long, R. S. Anderson, C. E. Briles, K. J. Brown, D. Colombaroli, D. J. Hallett, M. J. Power, E. A. Scharf, and M. K. Walsh, "Long-term Perspective on Wildfires in the Western USA," Proc. Nat. Acad. Sci., No. 9, 109 (2012).

    Article  Google Scholar 

  33. I. I. Mokhov and A. V. Timazhev, "Integral Index of Blocking Activity in the Atmosphere of Northern Hemisphere during Last Decades," Res. Activ. Earth Syst. Modell., Ed. by E. Astakhova, Rep. 51, S. 2 (2021).

  34. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, "Changes in Atmospheric Blocking Characteristics within Euro-Atlantic Region and Northern Hemisphere as a Whole in the 21st Century from Model Simulations Using RCP Anthropogenic Scenarios," Glob. Planet. Change, 122 (2014).

    Article  Google Scholar 

  35. B. J. Stocks, M. A. Fosberg, T. J. Lynham, L. Mearns, B. M. Wotton, Q. Yang, J.-Z. Jin, K. Lawrence, G. R. Hartley, J. A. Mason, and D. W. McKenney, "Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests," Climate Change, No. 1, 38 (1998).

    Article  Google Scholar 

  36. S. Tibaldi and F. Molteni, "On the Operational Predictability of Blocking," Tellus A, 42 (1990).

    Article  Google Scholar 

  37. G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, "Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural and Peat Fires (1997–2009)," Atmos. Chem. Phys., 10 (2010).

    Article  Google Scholar 

  38. N. N. Vygodskaya, P. Ya. Groisman, N. M. Tchebakova, J. A. Kurbatova, O. Panfyorov, E. I. Parfenova, and A. F. Sogachev, "Ecosystems and Climate Interactions in the Boreal Zone of Northern Eurasia," Environ. Res. Lett., No. 4, 2 (2007).

    Article  Google Scholar 

  39. A. L. Westerling, H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, "Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity," Science, 313 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 7, pp. 94-101. https://doi.org/10.52002/0130-2906-2023-7-94-101.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Sitnov, S.A. Connection of Wildfires in Russian Regions to Atmospheric Blockings. Russ. Meteorol. Hydrol. 48, 624–629 (2023). https://doi.org/10.3103/S1068373923070099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923070099

Keywords

Navigation