Skip to main content
Log in

Analysis of the Atmosphere and the Ocean Upper Layer State Predictability for up to 5 Years Ahead Using the INMCM5 Climate Model Hindcasts

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

A series of hindcasts for 1–5 years were performed using the INM RAS climate model (INMCM5). Each forecast started on November 1 every year during 1980–2020. The predictability of large-scale climate variability modes on timescales from a season to 5 years is assessed with the series of INMCM5 hindcasts. The spatial distribution of correlation coefficients of the temporal anomalies of the annual mean ocean water temperature averaged for the depths from 0 to 300 m and correlation coefficients of temporal anomalies of the Arctic sea ice area are calculated using the hindcasts, historical experiments and their extensions according to the SSP3-7.0 scenario of the INM RAS climate model. The contributions of initial conditions and external forcings to the predictability of the anomaly correlation coefficients are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. A. S. Krovnin, "Connectivity of Climatic Variations in the North Atlantic and North Pacific," Trudy VNIRO, No. 180 (2020).

  2. E. S. Nesterov, The North Atlantic Oscillation: The Atmosphere and the Ocean (Triada, Moscow, 2013) [in Russian].

    Google Scholar 

  3. L. H. Backer, L. C. Shafrey, R. T. Sutton, A. Weisheimer, and A. A. Scaife, "An Intercomparison of Skill and Overconfidence/Underconfidence of the Wintertime North Atlantic Oscillation in Multimodel Seasonal Forecasts," Geophys. Res. Lett., No. 15, 45 (2018).

    Article  Google Scholar 

  4. E. A. Barnes, S. M. Samarasinghe, I. Ebert-Uphoff, and J. C. Furtado, "Tropospheric and Stratospheric Causal Pathways between the MJO and NAO," J. Geophys. Res. Atmos., 124 (2019).

    Article  Google Scholar 

  5. G. J. Boer, D. Smith, C. Cassou, F. Doblas-Reyes, G. Danabasoglu, B. Kirtman, Y. Kushnir, M. Kimoto, G. Meehl, R. Msadek, W. Mueller, K. Taylor, F. Zwiers, M. Rixen, Y. Ruprich-Robert, and R. Eade, "The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6," Geosci. Model Dev., 9 (2016).

    Article  Google Scholar 

  6. M. Bushuk, R. Msadek, M.Winton, G. A. Vecchi, R. Gudgel, A. Rosati, and X. Yang, "Skillful Regional Prediction of Arctic Sea Ice on Seasonal Timescales," Geophys. Res. Lett., 44 (2017).

    Article  Google Scholar 

  7. M. Bushuk, M. Winton, D. B. Bonan, E. Blanchard-Wrigglesworth, and T. L. Delworth, "A Mechanism for the Arctic Sea Ice Spring Predictability Barrier," Geophys. Res. Lett., 47 (2020).

    Article  Google Scholar 

  8. J. A. Carton, G. A. Chepurin, and L. Chen, "SODA3: A New Ocean Climate Reanalysis," J. Climate, 31 (2018).

    Article  Google Scholar 

  9. D. J. Cavalieri, C. L. Parkinson, P. Gloersen, and H. J. Zwally, Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, 1996).

  10. J. J. Day, S. Tietsche, and E. Hawkins, "Pan-Arctic and Regional Sea Ice Predictability: Initialization Month Dependence," J. Climate, 27 (2014).

    Article  Google Scholar 

  11. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thepaut, and F. Vitart, "The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System," Quart. J. Roy. Meteorol. Soc., 137 (2011).

    Article  Google Scholar 

  12. V. Eyring, S. Bony, G. A. Meehl, C. Senior, B. Stevens, R. Stouffer, and K. Taylor, "Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization," Geosci. Model Dev., No. 5, 9 (2016).

    Article  Google Scholar 

  13. M. Flugel and P. Chang, "Does the Predictability of ENSO Depend on the Seasonal Cycle?", J. Atmos. Sci., 55 (1998).

    Article  Google Scholar 

  14. J. R. Garcia-Serrano, C. J. Frankignoul, G. Gastineau, and A. D. Camara, "On the Predictability of the Winter Euro-Atlantic Climate: Lagged Influence of Autumn Arctic Sea Ice," J. Climate, 28 (2015).

    Article  Google Scholar 

  15. H. Hersbach, B. Bell, P. Berrisford, and S. Hirahara, "The ERA5 Global Reanalysis," Quart. J. Roy. Meteorol. Soc., 146 (2020).

  16. Historical El Niño/La Niña Episodes (1950–Present) (National Weather Service, Climate Prediction Center), https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (Accessed July 12, 2022).

  17. Intergovernmental Panel on Climate Change (IPCC): 2007. Working Group I Contribution to the Sixth Assessment Report (AR6), Climate Change 2021: The Physical Science Basis (2021), https://www.ipcc.ch/assessment-report/ar6/ (Accessed January 12, 2023).

  18. E. K. Jin, J. L. Kinter, and B. Wang, "Current Status of ENSO Prediction Skill in Coupled Ocean–Atmosphere Models," Climate Dynamics, No. 6, 31 (2008).

    Article  Google Scholar 

  19. Y. Kushnir, A. A. Scaife, R. Arritt, G. Balsamo, G. Boer, F. Doblas-Reyes, E. Hawkins, M. Kimoto, R. Kolli, A. Kumar, D. Matei, K. Matthes, W. Muller, T. O’Kane, J. Perlwitz, S. Power, M. Raphael, A. Shimpo, D. M. Smith, M, P. Tuma, and B. Wu, "Towards Operational Predictions of the Near-term Climate," Nature Climate Change, 9 (2019).

  20. F. Maruyama, "The Relation among the Solar Activity, the Total Ozone, QBO, NAO, and ENSO by Wavelet-based Multifractal Analysis," J. Appl. Math. Phys., 6 (2018).

    Article  Google Scholar 

  21. M. J. McPhaden, S. E. Zebiak, and M. H. Glantz, "ENSO as an Integrating Concept in Earth Science," Science, 314 (2006).

    Article  Google Scholar 

  22. J. G. Pinto, M. Reyers, and U. Ulbrich, "The Variable Link between PNA and NAO in Observations and in Multi-century CGCM Simulations," Climate Dynamics, 36 (2010).

    Article  Google Scholar 

  23. A. W. Robertson, C. R. Mechoso, and Y. Kim, "The Influence of Atlantic Sea Surface Temperature Anomalies on the North Atlantic Oscillation," J. Climate, 13 (2000).

    Article  Google Scholar 

  24. A. A. Scaife, A. Arribas, E. W. Blockley, A. M. Brookshaw, R. T. Clark, N. Dunstone, R. Eade, D. R. Fereday, C. K. Folland, M. Gordon, L. Hermanson, J. R. Knight, D. J. Lea, C. MacLachlan, A. V. Maidens, M. J. Martin, A. K. Peterson, D. M. Smith, M. Vellinga, E. Wallace, J. Waters, and A. I. Williams, "Skillful Long-range Prediction of European and North American Winters," Geophys. Res. Lett., 41 (2014).

    Article  Google Scholar 

  25. A. A. Sellar, C. G. Jones, J. P. Mulcahy, Y. Tang, A. Yool, A. Wiltshire, F. O’Connor, M. Stringer, R. Hill, J. Palmieri, S. Woodward, L. Mora, T. Kuhlbrodt, S. Rumbold, D. Kelley, R. Ellis, C. E. Johnson, J. Walton, N. Abraham, M. Andrews, T. Andrews, A. Archibald, S. Berthou, E. Burke, E. Blockley, K. Carslaw, M. Dalvi, J. Edwards, G. Folberth, N. Gedney, P. T. Griffiths, A. Harper, M. Hendry, A. J. Hewitt, B. Johnson, A. Jones, C. Jones, J. Keeble, S. Liddicoat, O. Morgenstern, R. Parker, V. Predoi, E. Robertson, A. Siahaan, R. S. Smith, R. Swaminathan, M. Woodhouse, G. Zeng, and M. Zerroukat, "UKESM1: Description and Evaluation of the U.K. Earth System Model," J. Adv. Model. Earth Syst., 11 (2019).

  26. D. Smith, R. Eade, A. A. Scaife, L.-P. Caron, G. Danabasoglu, T. M. DelSole, T. Delworth, F. J. Doblas-Reyes, N. J. Dunstone, L. Hermanson, V. Kharin, M. Kimoto, W. J. Merryfield, T. Mochizuki, W. J. Muller, H. Pohlmann, S. Yeager, and X. Yang, "Robust Skill of Decadal Climate Predictions," Climate and Atmos. Sci., No. 13, 2 (2019).

    Article  Google Scholar 

  27. D. M. Smith, A. A. Scaife, R. Eade, and J. R. Knight, "Seasonal to Decadal Prediction of the Winter North Atlantic Oscillation: Emerging Capability and Future Prospects," Quart. J. Roy. Meteorol. Soc., 142 (2016).

    Article  Google Scholar 

  28. K. E. Taylor, R. J. Stouffer, and G. A. Meehl, "An Overview of CMIP5 and the Experiment Design," Bull. Amer. Meteorol. Soc., No. 4, 93 (2012).

    Article  Google Scholar 

  29. E. M. Volodin and A. S. Gritsun, "Simulation of Observed Climate Changes in 1850–2014 with Climate Model INM-CM5," Earth Syst. Dyn., 9 (2018).

    Article  Google Scholar 

  30. E. M. Volodin and A. S. Gritsun, "Simulation of Possible Future Climate Changes in the 21st Century in the INM-CM5 Climate Model," Izv. Atmos. Oceanic Phys., No. 3, 56 (2020).

    Article  Google Scholar 

  31. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Y. Galin, V. N. Lykossov, A. Gritsun, N. Diansky, A. Gusev, and N. Iakovlev, "Simulation of the Present Day Climate with the Climate Model INMCM5," Climate Dynamics, 49 (2017).

    Article  Google Scholar 

  32. V. Vorobyeva and E. Volodin, "Evaluation of the INM RAS Climate Model Skill in Climate Indices and Stratospheric Anomalies on Seasonal Timescale," Tellus A: Dynamic Meteorology and Oceanography, 73 (2021).

    Article  Google Scholar 

  33. Y. Wang, X. Yuan, H. Bi, M. Bushuk, Y. Liang, C. Li, and H. Huang, "Reassessing Seasonal Sea Ice Predictability of the Pacific-Arctic Sector Using a Markov Model," The Cryosphere, 16 (2022).

    Article  Google Scholar 

  34. Q. Wu, H. Hu, and L. Zhang, "Observed Influences of Autumn–Early Winter Eurasian Snow Cover Anomalies on the Hemispheric PNA-like Variability in Winter," J. Climate, 24 (2011).

    Article  Google Scholar 

  35. Y. Xu, V. Ramanathan, and D. G. Victor, "Global Warming will Happen Faster Than We Think," Nature, 564 (2018).

  36. X. Yuan, D. Chen, C. Li, L. Wang, and W. Wang, "Arctic Sea Ice Seasonal Prediction by a Linear Markov Model," J. Climate, 29 (2016).

    Article  Google Scholar 

  37. H. Zuo, M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, "The ECMWF Operational Ensemble Reanalysis–Analysis System for Ocean and Sea Ice: A Description of the System and Assessment," Ocean Sci., 15 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vorobeva.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 7, pp. 36-47. https://doi.org/10.52002/0130-2906-2023-7-36-47.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobeva, V.V., Volodin, E.M., Gritsun, A.S. et al. Analysis of the Atmosphere and the Ocean Upper Layer State Predictability for up to 5 Years Ahead Using the INMCM5 Climate Model Hindcasts. Russ. Meteorol. Hydrol. 48, 581–589 (2023). https://doi.org/10.3103/S106837392307004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837392307004X

Keywords

Navigation