Skip to main content
Log in

The Role of Vertical and Horizontal Wind Shear in the Development of Quasi-tropical Cyclones

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Cloud-resolving modeling has been implemented to investigate a lifecycle of two quasi-tropical cyclones (QTCs) over the Black and Mediterranean seas in September 2005 and 2018. The formation of the Mediterranean QTC under the influence of the PV streamer and the problems of predicting this phenomenon are considered. The influence of the mesocyclone wind system on cumulus convection is studied, while mesocyclone winds are assumed to be axisymmetric for simplicity. It has been found for the largest and most intense QTCs that vertical wind shear may lead to the formation of supercellular storms, but to a rather limited extent and as a result of deviations of mesocyclone currents from the axial symmetry. In small intense QTCs, horizontal wind shear can suppress convection over a certain range of distances from the center of a cyclone, leading to a release of latent heat closer to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. P. S. Verezemskaya and V. M. Stepanenko, "Numerical Simulation of the Structure and Evolution of a Polar Mesocyclone over the Kara Sea. Part 1. Model Validation and Estimation of Instability Mechanisms," Meteorol. Gidrol., No. 6 (2016) [Russ. Meteorol. Hydrol., No. 6, 41 (2016)].

    Article  Google Scholar 

  2. V. V. Efimov, S. V. Stanichnyi, M. V. Shokurov, and D. A. Yarovaya, "Observations of a Quasi-tropical Cyclone over the Black Sea," Meteorol. Gidrol., No. 4 (2008) [Russ. Meteorol. Hydrol., No. 4, 33 (2008)].

    Article  Google Scholar 

  3. V. V. Efimov, M. V. Shokurov, and D. A. Yarovaya, "Numerical Simulation of a Quasi-tropical Cyclone over the Black Sea," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 6, 43 (2007)].

    Article  Google Scholar 

  4. R. B. Zaripov, Yu. B. Pavlyukov, and V. N. Krupchatnikov, "Studying Physical Mechanisms of Development of Black Sea Quasi-tropical Cyclones Using a High-resolution Atmosphere Model," Meteorol. Gidrol., No. 7 (2021) [Russ. Meteorol. Hydrol., No. 7, 46 (2021)].

    Article  Google Scholar 

  5. V. N. Krupchatnikov and I. V. Borovko, "Some Features of Polar Vortex Dynamics," Sibirskii Zhurnal Vychislitel’noi Matematiki, No. 4, 8 (2005).

  6. Yu. I. Yusupov, "The Method of Forecasting Squalls Using Thermodynamic Atmospheric Parameters and the Ertel Potential Vorticity," Meteorol. Gidrol., No. 11 (2013) [Russ. Meteorol. Hydrol., No. 11, 38 (2013)].

    Article  Google Scholar 

  7. ARW Version 4 Modeling System User’s Guide. April 2020, www2.mmm.ucar.edu.

  8. H. E. Brooks and R. B. Wilhelmson, "Hodograph Curvature and Updraft Intensity in Numerically Modelled Supercells," J. Atmos. Sci., No. 12, 50 (1993).

    Article  Google Scholar 

  9. K. A. Browning, "Airflow and Precipitation Trajectories within Severe Local Storms Which Travel to the Right of the Winds," J. Atmos. Sci., No. 11, 21 (1964).

    Article  Google Scholar 

  10. M. J. Bunkers, B. A. Klimowski, R. L. Zeitler, R. L. Thompson, and M. L. Weisman, "Predicting Supercell Motion Using a New Hodograph Technique," Wea. Forecast., No. 2, 15 (2000).

    Article  Google Scholar 

  11. L. Cavicchia, H. Storch, and S. Gualdi, "Mediterranean Tropical-like Cyclones and Future Climate," J. Climate, No. 19, 27 (2014).

    Article  Google Scholar 

  12. J. P. Chaboureau, F. Pantillon, D. Lambert, E. Richard, and C. Claud, "Tropical Transition of a Mediterranean Storm by Jet Crossing," Quart. J. Roy. Meteorol. Soc., No. 664, 138 (2012).

    Article  Google Scholar 

  13. A. Clark, J. Gao, P. T. Marsh, T. Smith, J. Kain, J. Correia, M. Xue, and F. Kong, "Tornado Pathlength Forecasts from 2010 to 2011 Using Ensemble Updraft Helicity," Wea. Forecast., No. 2, 28 (2013).

    Article  Google Scholar 

  14. G. C. Craig and S. L. Gray, "CISK or WISHE as the Mechanism for Tropical Cyclone Intensification," J. Atmos. Sci., No. 23, 53 (1996).

    Article  Google Scholar 

  15. K. A. Emanuel, "An Air-sea Interaction Theory for Tropical Cyclones. Part I: Steady-state Maintenance," J. Atmos. Sci., No. 6, 43 (1986).

    Article  Google Scholar 

  16. K. A. Emanuel, Divine Wind: The History and Science of Hurricanes (Oxford Univ. Press, New York, 2005).

    Book  Google Scholar 

  17. J. L. Evans and M. P. Guishard, "Atlantic Subtropical Storms. Part I: Diagnostic Criteria and Composite Analysis," Mon. Wea. Rev., No. 7, 137 (2009).

    Article  Google Scholar 

  18. L. Fita, R. Romero, and C. Ramis, "Intercomparison of Intense Cyclogenesis Events over the Mediterranean Basin Based on Baroclinic and Diabatic Influences," Adv. Geosci., 7 (2006).

    Article  Google Scholar 

  19. GFS/GDAS Changes since 1991, https://www.emc.ncep.noaa.gov/gmb/STATS/html/ model_changes.html (Accessed October 7, 2022).

  20. J. Grieser, Convection Parameters. Environmental Science (2012), http://www.juergengrieser.de/Covection Parameters/ConvectionParameters.pdf (Accessed October 7, 2022).

  21. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J. Thepaut, "The ERA5 Global Reanalysis," Quart. J. Roy. Meteorol. Soc., Part A, No. 739, 146 (2020).

    Article  Google Scholar 

  22. J. S. Kain, S. J. Weiss, D. R. Bright, M. E. Baldwin, J. Levit, G. W. Carbin, C. Schwartz, M. Weisman, K. Droegemeier, D. Weber, and K. Thomas, "Some Practical Consideration Regarding Horizontal Resolution in the First Generation of Operational Convection-allowing NWP," Wea. Forecast., No. 10, 23 (2008).

    Article  Google Scholar 

  23. V. T. Montgomery, M. E. Nicholls, T. A. Cram, and A. B. Saunders, "A Vortical Hot Tower Route to Tropical Cyclogenesis," J. Atmos. Sci., No. 1, 63 (2006).

    Article  Google Scholar 

  24. M. T. Montgomery and R. K. Smith, "Paradigm for Tropical Cyclone Intensification," Austral. Meteorol. Oceanogr. J., No. 1, 64 (2014).

    Article  Google Scholar 

  25. P. T. Nastos, K. K. Papadimou, and I. T. Matsangouras, "Mediterranean Tropical-like Cyclones: Impacts and Composite Daily Means and Anomalies of Synoptic Patterns," Atmos. Res., 208 (2018).

    Article  Google Scholar 

  26. NWS. Convective Season Environmental Parameters and Indices, https://www.weather.gov/lmk/indices (Accessed October 7, 2022).

  27. R. Portmann, J. J. Gonsalez-Aleman, M. Sprenger, and H. Wernli, "How an Uncertain Shortwave Perturbation on the North Atlantic Wave Guide Affects the Forecast of an Intense Mediterranean Cyclone (Medicane Zorbas)," Weather Clim. Dynam., No. 2, 1 (2020).

    Article  Google Scholar 

  28. K. Riemann-Campe, K. Freadrich, and F. Lunkeit, "Global Climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 Reanalysis," Atmos. Res., 93 (2009).

    Article  Google Scholar 

  29. R. Romero and K. Emanuel, "Medicane Risk in a Changing Climate," J. Geophys. Res. Atmos., No. 12, 118 (2013).

    Article  Google Scholar 

  30. C. M. Rosoff, W. H. Schubert, and B. D. McNoldy, "Rapid Filamentation Zones in Intense Tropical Cyclones," J. Atmos. Sci., No. 1, 63 (2006).

    Article  Google Scholar 

  31. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G. Duda, D. M. Barker, X.-Y. Huang, A Description of the Advanced Research WRF Model Version 4, NCAR Technical Notes NCAR/TN-446+STR (2019).

  32. R. L. Thompson, R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, "Close Proximity Soundings within Supercell Environments Obtained from the Rapid Update Cycle," Wea. Forecast., No. 12, 18 (2003).

    Article  Google Scholar 

  33. A. J. Vries, "A Global Climatological Perspective on the Importance of Rossby Wave Breaking and Intense Moisture Transport for Extreme Precipitation Events," Weather Clim. Dynam., 2 (2021).

  34. Y. Wang, "Rapid Filamentation Zone in a Numerically Simulated Tropical Cyclone," J. Atmos. Sci., No. 4, 65 (2008).

    Article  Google Scholar 

  35. M. L. Weisman and J. B. Klemp, "The Dependence of Numerically Simulated Convective Storms on Wind Shear and Buoyancy," Mon. Wea. Rev., No. 6, 110 (1982).

    Article  Google Scholar 

  36. F. Zhang and K. Emanuel, "On the Role of Surface Fluxes and WISHE in Tropical Cyclone Intensification," J. Atmos. Sci., No. 5, 73 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Zaripov.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 7, pp. 5-17. https://doi.org/10.52002/0130-2906-2023-7-5-17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaripov, R.B., Krupchatnikov, V.N. & Pavlyukov, Y.B. The Role of Vertical and Horizontal Wind Shear in the Development of Quasi-tropical Cyclones. Russ. Meteorol. Hydrol. 48, 557–566 (2023). https://doi.org/10.3103/S1068373923070014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923070014

Keywords

Navigation