Skip to main content
Log in

Instrumental Bioassays for Assessing Water, Soil, and Waste Toxicity

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The paper presents the main achievements of the Siberian Federal University in the field of environmental pollution biomonitoring. Methods for increasing the reproducibility of bioassay results by using a specialized instrumental set, maintaining controlled standard conditions, and automating processes are shown. Some approaches to solving the problems of insufficient sensitivity of test objects to pollutants and the long duration and high labor intensity of bioassays are presented. The described methods make it possible to study toxicity of various media (water, soil, waste), as well as to evaluate the impact of pollutants on organisms of different trophic levels. The issues of developing and implementing rapid methods for detecting toxicity of the analyzed media are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. GOST R 54496-2011 (ISO 8692:2004). Determination of Toxicity Using Green Freshwater Unicellular Alga (Standartinform, Moscow, 2012) [in Russian].

  2. FR. 1.39.2007.03223. Method for Determining Toxicity of Water, Water Extracts from Soil, Seqage Sludge, and Waste Based on Variations in the Chlorophyll Fluorescence Level and Alga Cell Number (AKVAROS, Moscow, 2007) [in Russian].

  3. L. V. Tsatsenko, “Detection of Heavy Metal Ions in Water by Analytic Bioassays Using Duckweed ( Lemna minor L.),” Trudy Kubanskogo Gosudarstvennogo Agrarnogo Univesiteta, No. 48 (2014).

  4. L. V. Tsatsenko and V. G. Paskhalidi, “Duckweed as a Model Object in Bioassays for Water and Soil Media,” Maslichnye Kul’tury. Nauchno-tekhnicheskii Byulleten’ Vserossiiskogo Nauchno-issledovatel’skogo Instituta Maslichnykh Kul’tur, No. 4 (2018).

  5. N. Amponsah, A. Oyinlola, T. Patel, M. Quach, A. Saleem, and D. Pinolini, “Synergistic Effects of Temperature and Pollution on Artemia salina,” J. Biolog. Sci., 3 (2017).

    Google Scholar 

  6. B. M. Angel, S. L. Simpson, A. A. Chariton, J. L. Stauber, and D. F. Jolley, “Time-averaged Copper Concentrations from Continuous Exposures Predicts Pulsed Exposure Toxicity to the Marine Diatom, Phaeodactylum tricornutum: Importance of Uptake and Elimination,” Aquat. Toxicol., 164 (2015).

    Article  Google Scholar 

  7. J. S. Burlew, Algal Culture from Laboratory to Pilot Plant (Carnegie Inst. Washington, 1953).

    Google Scholar 

  8. A. L. Charles, S. J. Markich, J. L. Stauber, and L. F. de Filippis, “The Effect of Water Hardness on the Toxicity of Uranium to a Tropical Freshwater Alga ( Chlorella sp.),” Aquat. Toxicol., No. 1–2, 60 (2002).

    Article  Google Scholar 

  9. M. L. de Baat, D. A. Bas, S. A. M. van Beusekom, S. Droge, F. van der Meer, M. de Vries, P. Verdonschot, and M. Kraak, “Nationwide Screening of Surface Water Toxicity to Algae,” Sci. Total Environ., 645 (2018).

    Article  Google Scholar 

  10. B. I. Escher, S. Ait-Aissa, P. A. Behnisch, W. Brack, F. Brion, A. Brouwer, S. Buchinger, S. E. Crawford, D. D. Pasquier, T. Hamers, K. Hettwer, K. Hilscherova, H. Hollert, R. Kase, C. Kienle, A. Tindall, J. Tuerk, R. van der Oost, E. Vermeirssen, and P. Neale, “Effect-based Trigger Values for in Vitro and in Vivo Bioassays Performed on Surface Water Extracts Supporting the Environmental Quality Standards (EQS) of the European Water Framework Directive,” Sci. Total Environ., 628–629 (2018).

  11. E. G. Fawaz, D. A. Salam, and L. Kamareddine, “Evaluation of Copper Toxicity Using Site Specific Algae and Water Chemistry: Field Validation of Laboratory Bioassays,” Ecotoxicol. Environ. Safety, 155 (2018).

    Article  Google Scholar 

  12. K. A. Finlayson, F. D. L. Leusch, and J. P. van de Merwe, “Review of Ecologically Relevant in Vitro Bioassays to Supplement Current in Vivo Tests for Whole Effluent Toxicity Testing. Part 1: Apical Endpoints,” Sci. Total Environ., 851 (2022).

    Article  Google Scholar 

  13. N. M. Franklin, L. Stauber, S. Apte, and R. P. Lim, “Effect of Initial Cell Density on the Bioavailability and Toxicity of Copper in Microalgal Bioassays,” Environ. Toxicol. Chem., 21 (2002).

    Article  Google Scholar 

  14. P. Ghosh, I. S. Thakur, and A. Kaushik, “Bioassays for Toxicological Risk Assessment of Landfill Leachate: A Review,” Ecotoxicol. Environ. Safety, 141 (2017).

    Article  Google Scholar 

  15. K. Grintzalisa, W. Daia, K. Panagiotidisa, A. Belavgenia, and M. R. Viant, “Miniaturising Acute Toxicity and Feeding Rate Measurements in Daphnia magna,” Ecotoxicol. Environ. Safety, 139 (2017).

    Article  Google Scholar 

  16. H. S. Hong, M. H. Wang, X. G. Huang, and D. Z. Wang, “Effects of Macronutrient Additions on Nickel Uptake and Distribution in the Dinoflagellate Prorocentrum donghaiense Lu,” Environ. Pollut., 157 (2009).

    Article  Google Scholar 

  17. ISO/DIS 20079. Water QualityDetermination of the Toxic Effect of Water Constituents and Waste Water to Duckweed (Lemna minor). Duckweed Growth Inhibition Test. ISO TC 147/SC 5/WG 5 (2004).

  18. A. Jia, B. I. Escher, F. D. L. Leusch, J. Tang, E. Prochazka, B. Dong, E. M. Snyder, and S. Snyder, “In Vitro Bioassays to Evaluate Complex Chemical Mixtures in Recycled Water,” Water Res., 80 (2015).

    Article  Google Scholar 

  19. E. Lari, D. Steinkey, and G. G. Pyle, “A Novel Apparatus for Evaluating Contaminant Effects on Feeding Activity and Heart Rate in Daphnia spp.,” Ecotoxicol. Environ. Safety, 135 (2017).

    Article  Google Scholar 

  20. F. D. L. Leusch, S. J. Khan, S. Laingam, E. Prochazka, S. Froscio, T. Trinh, H. Chapman, and A. Humpage, “Assessment of the Application of Bioanalytical Tools as Surrogate Measure of Chemical Contaminants in Recycled Water,” Water Res., 49 (2014).

    Article  Google Scholar 

  21. J. L. Levy, J. L. Stauber, S. A. Wakelin, and D. F. Jolley, “The Effect of Bacteria on the Sensitivity of Microalgae to Copper in Laboratory Bioassays,” Chemosphere, 74 (2009).

    Article  Google Scholar 

  22. J. Louisse, M. M. L. Dingemans, K. A. Baken, A. V. van Wezel, and M. Schriks, “Exploration of ToxCast/Tox21 Bioassays as Candidate Bioanalytical Tools for Measuring Groups of Chemicals in Water,” Chemosphere, 209 (2018).

    Article  Google Scholar 

  23. J. Ma, F. Chen, B. Zhou, Z. Zhang, and K. Pan, “Effects of Nitrogen and Phosphorus Availability on Cadmium Tolerance in the Marine Diatom Phaeodactylum tricornutum,” Sci. Total Environ., 838 (2022).

    Article  Google Scholar 

  24. D. P. Magalhaes, M. R. C. Marques, D. F. Baptista, and D. F. Buss, “Selecting a Sensitive Battery of Bioassays to Detect Toxic Effects of Metals in Effluents,” Ecotoxicol. Environ. Safety, 110 (2014).

    Article  Google Scholar 

  25. A. J. Miao and W. X. Wang, “Cadmium Toxicity to Two Marine Phytoplankton under Different Nutrient Conditions,” Aquat. Toxicol., 78 (2006).

    Article  Google Scholar 

  26. P. A. Neale, R. Altenburger, S. Ait-Aissa, F. Brion, W. Busch, G. de Aragao Umbuzeiro, M. Denison, D. D. Pasquier, K. Hilscherova, H. Hollert, D. A. Morales, J. Novak, R. Schlichting, T. Seiler, H. Serra, Y. Shao, A. Tindall, K. Tollefsen, T. Williams, and B. Escher, “Development of a Bioanalytical Test Battery for Water Quality Monitoring: Fingerprinting Identified Micropollutants and Their Contribution to Effects in Surface Water,” Water Res., 123 (2017).

  27. P. A. Neale, N. A. Munz, S. Ait-Aissa, R. Altenburger, F. Brion, W. Busch, B. Escher, K. Hilscherova, C. Kienle, J. Novak, T. Seiler, Y. Shao, C. Stamm, and J. Hollender, “Integrating Chemical Analysis and Bioanalysis to Evaluate the Contribution of Wastewater Effluent on the Micropollutant Burden in Small Streams,” Sci. Total Environ., 576 (2017).

    Article  Google Scholar 

  28. OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2 (OECD Publishing, Paris, 2011).

  29. A. Park, Y.-J. Kim, E. Choi, M. T. Brown, and T. Han, “A Novel Bioassay Using Root Re-growth in Lemna,” Aquat. Toxicol., 140–141 (2013).

    Article  Google Scholar 

  30. J. W. Rijstenbil, F. Dehairs, R. Ehrlich, and J. A. Wijnholds, “Effect of the Nitrogen Status on Copper Accumulation and Pools of Metal-binding Peptides in the Planktonic Diatom Thalassiosira pseudonana,” Aquat. Toxicol., 42 (1998).

    Article  Google Scholar 

  31. Y. Saygi, “Effects of Temperature on Survival and Growth of Artemia from Tuz Lake,” The Israeli J. Aquaculture – Bamidgeh, No. 3, 54 (2002).

  32. USEPA. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4th ed. (Office of Water, United States Environmental Protection Agency, Washington, 2002).

  33. P. Valitalo, R. Massei, I. Heiskanen, P. Behnisch, W. Brack, A. Tindall, D. Du Pasquier, E. Kuster, A. Mikola, T. Schulze, and M. Sillanpaa, “Effect-based Assessment of Toxicity Removal during Wastewater Treatment,” Water Res., 126 (2017).

    Article  Google Scholar 

  34. M. Wieczerzak, J. Namiesnik, and B. Kudlak, “Bioassays as One of the Green Chemistry Tools for Assessing Environmental Quality: A Review,” Environ. Int., 94 (2016).

    Article  Google Scholar 

  35. P. Ziegler, K. S. Sree, and K. J. Appenroth, “Duckweeds for Water Remediation and Toxicity Testing,” Toxicol. Environ. Chem., No. 10, 98 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Grigor’ev.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 5, pp. 96-106. https://doi.org/10.52002/0130-2906-2023-5-96-106.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, Y.S., Shashkova, T.L., Stravinskene, E.S. et al. Instrumental Bioassays for Assessing Water, Soil, and Waste Toxicity. Russ. Meteorol. Hydrol. 48, 460–466 (2023). https://doi.org/10.3103/S1068373923050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923050096

Keywords

Navigation