Skip to main content
Log in

A Model of Mean Long-term Values of Atmospheric Aerosol Optical Depth at a 354 nm Wavelength in Russia in the Warm Season

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Based on the results of satellite measurements using OMI instrumentation (NASA, USA) at 354 nm in 2005–2020 (http://avdc.gsfc.nasa.gov) over nine populated areas in Russia, after the exclusion of cases of the smoke and dust registration in the atmosphere, approximations were obtained for temporal variations in average long-term values of atmospheric aerosol optical depth (AOD) in April to September. The approximations obtained for four most spaced-apart areas made it possible to develop a spatiotemporal model of average long-term AOD in the ultraviolet band for the territory from 43° to 60° N and from 33° to 133° E for a warm season. A verification of the model using data for the other five areas that were not included in the model development and a comparison of the results with AERONET ground data confirmed a fairly good quality of the model. An analysis of the measurement data is indicative of significant negative annual linear trends in the mean April–September AOD for all analyzed areas

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. S. V. Afonin, V. V. Belov, B. D. Belan, M. V. Panchenko, S. M. Sakerin, and D. M. Kabanov, "Comparison of Satellite (AVHRR/NOAA) and Ground-based Measurements of Atmospheric Aerosol Characteristics," Optika Atmos. Okeana, No. 12, 15 (2002) [Atmos. Oceanic Opt., No. 12, 15 (2002)].

    Google Scholar 

  2. S. V. Afonin, V. V. Belov, M. V. Panchenko, S. M. Sakerin, and M. V. Engel’, "Correlation Analysis of Spatial Fields of the Aerosol Optical Thickness on the Base of MODIS Data," Optika Atmos. Okeana, No. 6, 21 (2008) [Atmos. Oceanic Opt., No. 6, 21 (2008)].

    Google Scholar 

  3. S. V. Afonin, V. V. Belov, and M. V. Engel’, "Comparative Analysis of Space Aerosol Data of the MODIS Aerosol Products Type," Optika Atmos. Okeana, No. 3, 21 (2008) [Atmos. Oceanic Opt., No. 3, 21 (2008)].

    Google Scholar 

  4. S. V. Afonin, M. V. Engel’, A. Yu. Maior, A. N. Pavlov, S. Yu. Stolyarchuk, K. A. Shmirko, and O. A. Bukin, "Results of Integrated Aerosol Experiment in the Continent–Ocean Transition Zone (Primorye and the Sea of Japan). Part 2. Analysis of Spatial and Temporal Variability of Aerosol Characteristics by Satellite Data and Lidar Measurements," Optika Atmos. Okeana, No. 9, 23 (2010) [Atmos. Oceanic Opt., No. 9, 23 (2010)].

  5. Aerosol and Climate, Ed. by K. Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  6. A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, "Effects of Natural and Anthropogenic Aerosols on Global and Regional Climate," Rossiiskii Khim. Zhurnal (Zhurnal Rossiiskogo Khim. Ob-va im. D. I. Mendeleeva), No. 5, 52 (2008) [in Russian].

  7. A. S. Ginzburg, I. N. Mel’nikova, D. A. Samulenkov, M. V. Sapunov, and L. V. Katkovskii, "Simple Optical Model of Clear-sky and Cloudy Atmosphere for Calculation of Solar Irradiance," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 13 (2016) [in Russian].

  8. E. V. Gorbarenko, "Local and Global Factors That Determined Changes in Atmospheric Aerosol Optical Depth in Moscow in 1955–2019," in Proceedings of International Symposium "Atmospheric Radiation and Dynamics" (MSFRD-2019) (St. Petersburg State Univ., St. Petersburg, 2019) [in Russian].

  9. E. V. Gorbarenko, "Characteristics of Atmospheric Transparency and Radiation Budget Components," in Ecological and Climatic Characteristics of the Moscow Atmosphere in 2018 According to the MSU Meteorological Observatory, Ed. by M. A. Lokoshchenko (MAKS Press, Moscow, 2019) [in Russian].

  10. E. V. Gorbarenko, A. E. Erokhina, and A. B. Lukin, "Long-term Changes in Aerosol Optical Thickness of the Atmosphere in Russia," Meteorol. Gidrol., No. 7 (2006) [Russ. Meteorol. Hydrol., No. 7 (2006)].

  11. E. Yu. Zhdanova, Yu. O. Khlestova, and N. E. Chubarova, "Trends in Atmospheric Aerosol Characteristics in Moscow Derived from Multiyear AERONET Measurements," Optika Atmos. Okeana, No. 6, 32 (2019) [Atmos. Oceanic Opt., No. 6, 32 (2019)].

    Article  Google Scholar 

  12. L. S. Ivlev, "Aerosol Forcing in Climate Processes," Optika Atmos. Okeana, No. 5, 24 (2011) [Atmos. Oceanic Opt., No. 6, 24 (2011)].

  13. Studying Aerosol Radiation Characteristics in the Asian Part of Russia, Ed. by S. M. Sakerin (Inst. Atmos. Opt. Siber. Branch of Russ. Acad. Sci., Tomsk, 2012) [in Russian].

  14. D. M. Kabanov, S. A. Beresnev, S. Yu. Gorda, G. I. Kornienko, S. V. Nikolashkin, S. M. Sakerin, and M. A. Tashchilin, "Diurnal Behavior of Aerosol Optical Depth of the Atmosphere in a Few Regions of Asian Part of Russia," Optika Atmos. Okeana, No. 4, 26 (2013) [Atmos. Oceanic Opt., No. 4, 26 (2013)].

    Article  Google Scholar 

  15. D. V. Kalinskaya, A. A. Mol’kov, and A. A. Aleskerova, "Investigation of Optical Characteristics over the Gorky Reservoir in the Summer Seasons of 2016 and 2017," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 16 (2019) [in Russian].

    Google Scholar 

  16. D. V. Kalinskaya, A. S. Papkova, and D. M. Kabanov, "Research of the Aerosol Optical and Microphysical Characteristics of the Atmosphere over the Black Sea Region by the FIRMS System during the Forest Fires in 2018–2019," Morskoi Gidrofizicheskii Zhurnal, No. 5, 36 (2020) [Phys. Oceanogr., No. 5, 36 (2020)].

  17. I. L. Karol’, A. I. Reshetnikov, E. L. Makhotkina, N. N. Paramonova, and O. M. Pokrovskii, Changes in Greenhouse Gas and Atmospheric Aerosol Concentrations and Their Effects on Climate, http://climate2008.igke.ru/v2008/v1/vI-4.pdf [in Russian].

  18. E. L. Makhotkina, I. N. Plakhina, and A. B. Lukin, "Some Features of Atmospheric Turbidity Change over the Russian Territory in the Last Quarter of the 20th Century," Meteorol. Gidrol., No. 1 (2005) [Russ. Meteorol. Hydrol., No. 1 (2005)].

  19. I. N. Plakhina, "Long-term Variations in Atmospheric Aerosol Optical Depth (AOD) over the European Part of Russia in the Post-volcanic Period (Satellite and Ground Data)," in Proceedings of the 16th All-Russian Open Conference "Modern Problems of Remote Sensing from Space" (IKI RAN, Moscow, 2018) [in Russian].

  20. I. N. Plakhina, N. V. Pankratova, and E. L. Makhotkina, "Comparison of Ground and Satellite Monitoring of Aerosol Optical Thickness of the Atmosphere in Russia," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 15 (2018) [in Russian].

    Article  Google Scholar 

  21. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, and D. M. Kabanov, "Specific Features of the Spatial Distribution of the Atmospheric Aerosol Optical Depth in the Asian Part of Russia," Optika Atmos. Okeana, No. 6, 25 (2012) [in Russian].

    Google Scholar 

  22. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, G. I. Kornienko, B. N. Holben, and A. Smirnov, "Atmospheric Aerosol Optical Depth in Far East Primorye According to Satellite and Ground-based Observations," Optika Atmos. Okeana, No. 8, 24 (2011) [in Russian].

  23. S. M. Sakerin, S. Yu. Andreev, T. V. Bedareva, D. M. Kabanov, V. A. Poddubnyi, and A. P. Luzhetskaya, "Spatiotemporal Variations in the Atmospheric Aerosol Optical Depth on the Territory of the Volga Region, the Urals, and Western Siberia," Optika Atmos. Okeana, No. 11, 25 (2012) [in Russian].

  24. S. M. Sakerin, N. I. Vlasov, D. M. Kabanov, K. E. Lubo-Lesnichenko, A. N. Prakhov, V. F. Radionov, Yu. S. Turchinovich, B. N. Holben, and A. Smirnov, "Results of Spectral Measurements of Atmospheric Aerosol Optical Depth with Sun Photometers in the 58th Russian Antarctic Expedition," Optika Atmos. Okeana, No. 12, 26 (2013) [Atmos. Oceanic Opt., No. 12, 26 (2013)].

  25. S. M. Sakerin, E. V. Gorbarenko, and D. M. Kabanov, "Peculiarities of Many-year Variations of Atmospheric Aerosol Optical Thickness and Estimates of Influence of Different Factors," Optika Atmos. Okeana, No. 7, 21 (2008) [Atmos. Oceanic Opt., No. 7, 21 (2008)].

    Google Scholar 

  26. S. M. Sakerin and D. M. Kabanov, "Spectral Dependence of the Atmospheric Aerosol Optical Depth in the Wavelength Range from 0.37 to 4 \(\mu\)m," Optika Atmos. Okeana, No. 2, 20 (2007) [Atmos. Oceanic Opt., No. 2, 20 (2007)].

    Google Scholar 

  27. M. A. Tashchilin, I. P. Yakovleva, and S. M. Sakerin, "Spatiotemporal Variations of the Aerosol Optical Depth in the Baikal Region," Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 18 (2021) [in Russian].

    Article  Google Scholar 

  28. K. M. Firsov, E. V. Bobrov, and I. I. Klitochenko, "First Results of Photometric Measurements of Aerosol Optical Depth and Integrated Water Vapor over Volgograd," Vesti Volgogradskogo Gosudarstvennogo Universiteta, Ser. 1, Mat. Fiz., No. 1 (2012) [in Russian].

  29. N. E. Chubarova, "Major Aerosol Characteristics and Atmospheric Moisture Content According to the AERONET CIMEL Sun-sky Photometer," in Ecological and Climatic Characteristics of the Atmosphere in 2011 According to the MSU Meteorological Observatory, Ed. by N. E. Chubarova (MAKS Press, Moscow, 2012) [in Russian].

  30. R. Alfaro-Contreras, J. Zhang, J. S. Reid, and S. Christopher, "A Study of 15-year Aerosol Optical Thickness and Direct Shortwave Aerosol Radiative Effect Trends Using MODIS, MISR, CALIOP and CERES," Atmos. Chem. Phys., 17 (2017).

    Article  Google Scholar 

  31. M. Chiacchio, T. Ewen, M. Wild, M. Chin and T. Diehl, "Decadal Variability of Aerosol Optical Depth in Europe and Its Relationship to the Temporal Shift of the North Atlantic Oscillation in the Realm of Dimming and Brightening," J. Geophys. Res., 116 (2011).

  32. N. Y. Chubarova, "UV Variability in Moscow According to Long-term UV Measurements and Reconstruction Model," Atmos. Chem. Phys., No. 8, 12 (2008).

    Article  Google Scholar 

  33. N. E. Chubarova, E. E. Androsova, A. A. Kirsanov, O. B. Popovicheva, B. Vogel, H. Vogel, and G. S. Rivin, "Columnar and Surface Urban Aerosol in Moscow Megacity According to Measurements and Simulations with COSMO-ART Model," Atmos. Chem. Phys. (2022), preprint.

  34. N. Y. Chubarova, A. A. Poliukhov, and I. D. Gorlova, "Long-term Variability of Aerosol Optical Thickness in Eastern Europe over 2001–2014 According to the Measurements at the Moscow MSU MO AERONET Site with Additional Cloud and NO2 Correction," Atmos. Meas. Tech., 9 (2016).

    Article  Google Scholar 

  35. N. Chubarova, A. Poliukhov, M. Shatunova, G. Rivin, R. Becker, and S. Kinne, "Clear-sky Radiative and Temperature Effects of Different Aerosol Climatologies in the COSMO Model," Geography, Environment, Sustainability, No. 1, 11 (2018).

    Article  Google Scholar 

  36. T. Elias, A. M. Silva, N. Belo, S. Pereira, P. Formenti, G. Helas, and F. Wagner, "Aerosol Extinction in a Remote Continental Region of the Iberian Peninsula during Summer," J. Geophys. Res., 111 (2006).

  37. P. Gupta, M. V. Ratnam, B. L. Madhavan, and C. S. Narayanamurthy, "Long-term Trends in Aerosol Optical Depth Obtained across the Globe Using Multi-satellite Measurements," Atmos. Environ., 273 (2022).

    Article  Google Scholar 

  38. P. Gupta, L. A. Remer, F. Patadia, R. C. Levy, and S. A. Christopher, "High-resolution Gridded Level 3 Aerosol Optical Depth Data from MODIS," Remote Sens., 12 (2020).

    Article  Google Scholar 

  39. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, "AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization," Remote Sens. Environ., No. 1, 66 (1998).

    Article  Google Scholar 

  40. B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, "An Emerging Ground-based Aerosol Climatology: Aerosol Optical Depth from AERONET," J. Geophys. Res. Atmos., 106 (2001).

    Article  Google Scholar 

  41. N. C. Hsu, R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben, "Global and Regional Trends of Aerosol Optical Depth over Land and Ocean Using SeaWiFS Measurements from 1997 to 2010," Atmos. Chem. Phys., 12 (2012).

    Article  Google Scholar 

  42. J. Wey, Z. Li, Y. Peng, and L. Sun, "MODIS Collection 6.1 Aerosol Optical Depth Products over Land and Ocean: Validation and Comparison," Atmos. Environ., 201 (2019).

    Article  Google Scholar 

  43. S. Kinne, "The MACv2 Aerosol Climatology," Tellus B: Chem. Phys. Meteorol., No. 1, 71 (2019).

    Article  Google Scholar 

  44. S. Kinne, D. O’Donnel, P. Stier, S. Kloster, K. Zhang, H. Schmidt, S. Rast, M. Giorgetta, T. F. Eck, and B. Stevens, "MAC-v1: A New Global Aerosol Climatology for Climate Studies: MAV-v1 for Climate Studies," J. Adv. Model. Earth Syst., 5 (2013).

  45. J. Li, B. E. Carlson, O. Dubovik, and A. A. Lacis, "Recent Trends in Aerosol Optical Properties Derived from AERONET Measurements," Atmos. Chem. Phys. Discuss., 14 (2014).

    Article  Google Scholar 

  46. A. Mhawish, T. Banerjee, M. Sorek-Hamer, A. Lyapustin, D. M. Broday, and R. Chatfield, "Comparison and Evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) Aerosol Product over South Asia," Remote Sens. Environ., 224 (2019).

    Article  Google Scholar 

  47. K. Reddy, D. V. Phanikumar, H. Joshi, Y. N. Ahammed, and M. Naja, "Effect of Diurnal Variation of Aerosols on Surface Reaching Solar Radiation," J. Atmos. Solar-Terr. Phys., 129 (2015).

    Article  Google Scholar 

  48. D. G. Streets, F. Yan, M. Chin, T. Diehl, N. Mahowald, M. Schultz, M. Wild, Y. Wu, and C. Yu, "Anthropogenic and Natural Contributions to Regional Trends in Aerosol Optical Depth, 1980–2006," J. Geophys. Res. Atmos., 114 (2009).

  49. I. Tegen, P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, "Contribution of Different Aerosol Species to the Global Aerosol Extinction Optical Thickness: Estimates from Model Results," J. Geophys. Res. Atmos., No. D20, 102 (1997).

    Article  Google Scholar 

  50. A. Vogell, G. Alessa, R. Scheele, L. Weber, O. Dubovik, P. North, and S. Fiedler, "Uncertainty in Aerosol Optical Depth from Modern Aerosol-climate Models, Reanalyses, and Satellite Products," J. Geophys. Res. Atmos., 127 (2022).

    Article  Google Scholar 

  51. E. Yu. Zhdanova, N. Ye. Chubarova, and A. I. Lyapustin, "Assessment of Urban Aerosol Pollution over Moscow Megacity by MAIAC Aerosol Product," Atmos. Meas. Techn., 13 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Ivanova.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 3, pp. 32-46. https://doi.org/10.52002/0130-2906-2023-3-32-46.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.S. A Model of Mean Long-term Values of Atmospheric Aerosol Optical Depth at a 354 nm Wavelength in Russia in the Warm Season. Russ. Meteorol. Hydrol. 48, 210–220 (2023). https://doi.org/10.3103/S1068373923030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923030032

Keywords

Navigation