Skip to main content
Log in

Icing Effects on Air Transport Operation: State-of-the-art and Prediction Problems

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The review of the studies dealing with the effects of icing on air transport operation is presented. The problems of ground-based icing leading to the deterioration of runways and complication of pre-flight aerodrome operations are discussed. The reasons for the in-flight aircraft icing, the tools and methods of icing observation, the approaches to the forecasting of icing in clouds and precipitation are considered. The methods for predicting the icing of aircraft engines in the zones with high concentration of ice crystals are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. G. Alekhin, Yu. V. Kuleshov, A. A. Turkin, and V. A. Shemelov, “Statistical Evaluation of Probability of Icing in the Atmosphere Based on the Combination of Conditions,” Trudy Voenno-Kosmicheskoi Akademii im. A. F. Mozhaiskogo, No. 655 (2016) [in Russian].

  2. E. V. Volkova, “Detection and Assessment of Cloud Cover and Precipitation Parameters Using Data from MSU-MR Radiometer Onboard Meteor-M No. 2 Polar-orbiting Satellite for the European Part of Russia,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 5, 14 (2017) [in Russian].

  3. M. A. Volkova, I. V. Chizhevskaya, V. V. Chursin, and O. E. Nechepurenko, “Satellite Monitoring of Icing Zones,” in Proceedings of the 7th International Scientific Conference “Problems of Remote Sensing,” Krasnoyarsk, September 29–October 2, 2020 [in Russian].

  4. Temporary Methodical Instructions on Using DMRL-C Doppler Weather Radar Data in Synoptic Practice (Moscow, 2017), http://www.aviamettelecom.ru/activity/methodical/dmrl-s/ [in Russian].

  5. S. M. Eger, A. M. Matveenko, and M. A. Shatalov, Fundamentals of Aviation Technology (Mashinostroenie, Moscow, 2003) [in Russian].

    Google Scholar 

  6. A. R. Ivanova, “Icing of Aircraft Engines in Ice Crystals: Ways to Solve the Problem,” Gidrometeorologicheskie Issledovaniya i Prognozy, No. 2 (2018) [in Russian].

    Google Scholar 

  7. A. R. Ivanova, “An Experience of the Humidity Forecasts Verification and Assessment of Their Applicability in Forecasting of the Aircraft Icing Zones,” Meteorol. Gidrol., No. 6 (2009) [Russ. Meteorol. Hydrol., No. 6, 34 (2009)].

    Article  Google Scholar 

  8. A. R. Ivanova and E. N. Skriptunova, “Variations in Some Climatological Characteristics at the Aerodromes of the Russian Federation in 2001–2015,” Meteorol. Gidrol., No. 5 (2018) [Russ. Meteorol. Hydrol., No. 5, 43 (2018)].

    Article  Google Scholar 

  9. Guidance Material on Special AIREP Messages (Approved by Order No. 24 of the Federal Service for Hydrometeorology and Environmental Monitoring on February 2, 2017) [in Russian].

  10. Guidance Material on SIGMET and AIRMET (Approved by Order No. 95 of the Federal Service for Hydrometeorology and Environmental Monitoring on February 20, 2015) [in Russian].

  11. V. V. Zuev, D. P. Nakhtigalova, A. P. Shelekhov, E. A. Shelekhova, A. V. Pavlinskii, N. A. Baranov, and L. I. Kizhner, “Application of MTP-5PE Meteorological Temperature Profiler in an Airport for Determining Spatial Zones of Possible Aircraft Icing,” Optika Atmosfery i Okeana, No. 11, 28 (2015) [Atmos. Ocean. Opt., 29 (2016)].

    Article  Google Scholar 

  12. Methodical Recommendations “Airplane Protection from Icing Up on the Ground,” 6th ed. (2020), https://mak-iac.org/upload/iblock/23e/2020.09%20Deicing%20recommendations.pdf [in Russian].

  13. A. N. Nevzorov, Microphysics of Cold Clouds: A Phenomenon of Liquid Phase (LAP LAMBERT Academic Publishing, 2013) [in Russian].

  14. Order of the Ministry of Transport of the Russian Federation No. 293 of November 25, 2011 “On Approval of the Federal Aviation Regulations “Air Traffic Control in the Russian Federation” [in Russian].

  15. Order of the Ministry of Transport of the Russian Federation No. 262 of August 25, 2015 “On Approval of the Federal Aviation Regulations “Requirements for Airfields Intended for Takeoff, Landing, Taxiing, and Parking of Civil Aircraft” [in Russian].

  16. Order of the Ministry of Transport of the Russian Federation No. 286 of September 25, 2015 “On Approval of the Federal Aviation Regulations “Requirements for Operators of Civil Aviation Airfields. The Form and Procedure for Issuing a Document Confirming the Compliance of Civil Aviation Aerodrome Operators with the Requirements of the Federal Aviation Regulations” [in Russian].

  17. Annex 3 to the Convention on International Civil Aviation. Meteorological Service for International Air Navigation, 19th ed., July 2016.

  18. Annex 14 to the Convention on International Civil Aviation. Aerodromes, Vol. 1: Aerodrome Design and Operations, 8th ed., July 2018.

  19. Annex 15 to the Convention on International Civil Aviation. Aeronautical Information Services, 16 ed., July 2018.

  20. M. V. Storozhuk, “Ground-based Aircraft Icing: Measures on Prevention of Aviation Accidents,” Nauchnyi Vestnik MGTU GA, No. 219 (2015) [in Russian].

  21. S. P. Khromova and L. I. Mamontova, Meteorological Dictionary (Gidrometeoizdat, Leningrad, 1973) [in Russian].

    Google Scholar 

  22. N. P. Shakina and A. R. Ivanova, Forecasting Meteorological Conditions for Aviation (Triada, Moscow, 2016) [in Russian].

    Google Scholar 

  23. N. P. Shakina, E. N. Skriptunova, and A. R. Ivanova, “Conditions for Freezing Precipitation at Russian and CIS Airports. II. The Airport of Mineralnye Vody,” Meteorol. Gidrol., No. 2 (2005) [Russ. Meteorol. Hydrol., No. 2 (2005)].

    Google Scholar 

  24. N. P. Shakina, E. N. Skriptunova, A. R. Ivanova, and I. A. Khomenko, “Formation Conditions of Freezing Precipitation in the European Part of Russia and Catastrophic Glaze in December 2010,” in Turbulence, Dynamics of the Atmosphere and Climate. Proceedings of International Conference in Memory of Academician A. M. Obukhov (Moscow, 2013) [in Russian].

  25. V. A. Shchuchkin, “Studying the Problem of Engine Icing at Large Heights,” Aviatsionnye Sistemy, No. 1 (2019) [in Russian].

  26. Active, In-flight Ice Protection System (Battele HeatCoat, 2015), https://www.battelle.org/docs/default-source/government-offerings/national-security/tactical-systems-vehicles/battelle-2015-tactical-systems-heatcoat.pdf?sfvrsn=9e61dd88_8.

  27. Advanced Satellite Aviation Weather Products (ASAP) Program; https://ral.ucar.edu/projects/advanced-satellite-aviation-weather-products-asap-program.

  28. C. Augros, M. Lecocq, and N. Gaussiat, “Potential of Polarimetric Radar Observations for Aircraft Icing Detection,” in Proceedings of the WMO Aeronautical Meteorology Scientific Conference 2017, Toulouse, France, November 6–10, 2017.

  29. C. Augros, M. Lecocq, S. Riette, C. Le Bot, and N. Gaussiat, “Signatures of Supercooled Liquid Water Drops in Dual-polarization Observations Measured by Ground-based Radars,” in Proceedings of the WMO Aeronautical Meteorology Scientific Conference 2017, Toulouse, France, November 6–10, 2017.

  30. L. Battisti, Wind Turbine in Cold Climates (Springer, 2015).

    Book  Google Scholar 

  31. K. Bedka, C. Yost, L. Nguyen, and J. Strapp, “Analysis and Automated Detection of Ice Crystal Icing Conditions Using Geostationary Satellite Datasets and in Situ Ice Water Content Measurements,” SAE Int. J. Adv. Curr. Prac. in Mobility, No. 1, 2 (2020).

  32. M. Belo-Pereira, “Comparison of In-flight Aircraft Icing Algorithms Based on ECMWF Forecasts,” Meteorol. Appl., 22 (2015).

    Article  Google Scholar 

  33. B. C. Bernstein, R. M. Rasmussen, F. McDonough, and C. Wolff, “Keys to Differentiating between Small- and Large-drop Icing Conditions in Continental Clouds,” J. Appl. Meteorol. Climatol., No. 9, 58 (2019).

    Article  Google Scholar 

  34. F. Boudala, G. A. Isaac, and D. Wu, “Aircraft Icing Study Using Integrated Observations and Model Data,” Wea. Forecast., No. 3, 34 (2019).

    Article  Google Scholar 

  35. P. Bourgouin, “A Method to Determine Precipitation Types,” Wea. Forecast., 15 (2000).

    Article  Google Scholar 

  36. C. L. Bowyer and P. G. Gill, “Objective Verification of Global In-flight Icing Forecasts Using Satellite Observations: Verification of WAFS Icing Forecasts Using Satellite Observations,” Meteorol. Appl., 26 (2019).

    Article  Google Scholar 

  37. M. Cassas, S. Riette, B. Vie, and C. Lac, “Improving the Forecast of Aircraft Icing Conditions,” in Proceedings of the WMO Aeronautical Meteorology Scientific Conference 2017, Toulouse, France, November 6–10, 2017.

  38. G. Chen, W.-Ch. Wang, Ch.-T. Cheng, and H.-H. Hsu, “Extreme Snow Events along the Coast of the Northeast United States: Potential Changes due to Global Warming,” J. Climate (2020).

  39. M. Cholette, J.-M. Theriault, J. A. Milbrandt, and H. Morrison, “Impacts of Predicting the Liquid Fraction of Mixed-phase Particles on the Simulation of an Extreme Freezing Rain Event: The 1998 North American Ice Storm,” Mon. Wea. Rev., No. 8, 148 (2020).

    Article  Google Scholar 

  40. C. Dolls, C. Trink, N. Cedlacek, V. Pelikan, T. Comes, and F. Schultmann, “Adapting Rail and Road Networks to Weather Extremes: Case Studies for Southern Germany and Austria,” Nat. Hazards, 72 (2014).

    Article  Google Scholar 

  41. G. P. Ellrod and A. A. Bailey, “Assessment of Aircraft Icing Potential and Maximum Icing Altitude from Geostationary Meteorological Satellite Data,” Wea. Forecast., No. 1, 22 (2007).

    Article  Google Scholar 

  42. R. Erfani, L. Chouinard, and F. Legeron, “Reliability Analysis with an Icing Model for Estimating Extreme Events,” Nat. Hazards, 82 (2016).

    Article  Google Scholar 

  43. E. Gregow, B. Bernstein, I. Wittmeyer, and J. Hirvinnenm, “LAPS–LOWICE: A Real-time System for the Assessment of Low-level Icing Conditions and Their Effect on Wind Power,” J. Atmos. Ocean. Tech., No. 8, 32 (2015).

    Article  Google Scholar 

  44. I. Gultepe, R. Sharman, P. D. Williams, B. Zhou, G. Ellrod, P. Minnis, S. Trier, S. Griffin, S. S. Yum, B. Gharabaghi, W. Feltz, M. Temimi, Z. Pu, L. N. Storer, P. Kneringer, M. J. Weston, H. Y. Chuang, L. Thobois, A. P. Dimri, and S. J. Dietz, “A Review of High Impact Weather for Aviation Meteorology,” Pure Appl. Geophys., 176 (2019).

    Article  Google Scholar 

  45. J. Haggerty, E. Defer, A. de Laat, K. Bedka, J.-M. Moisselin, R. Potts, J. Delanoi, F. Parol, A. Grandin, and S. Divito, “Detecting Clouds Associated with Jet Engine Ice Crystal Icing,” Bull. Amer. Meteorol. Soc., No. 1, 100 (2019).

    Article  Google Scholar 

  46. T. Hauf and F. Schroder, “Aircraft Icing Research Flights in Embedded Convection,” Meteorol. Atmos. Phys., 91 (2006).

    Article  Google Scholar 

  47. T. G. Houston and S. A. Ghangnon, “Freezing Rain Events: A Major Weather Hazard in the Conterminous US,” Nat. Hazards, No. 2, 40 (2007).

    Article  Google Scholar 

  48. IATA Safety Report 2018, https://libraryonline.erau.edu/online-full-text/iata-safety-reports/IATA-Safety-Report-2018.pdf.

  49. G. Isaac, M. Bailey, S. Boudala, W. Burrows, S. Cober, R. Crowford, N. Donaldson, I. Gultepe, B. Hansen, I. Heckman, L. X. Huang, A. Ling, J. Mailhot, J. A. Milbrandt, J. Reid, and M. Fournier, “The Canadian Airport Nowcasting System (CAN-Now),” Meteorol. Appl., 21 (2014).

    Article  Google Scholar 

  50. G. Isaac, S. G. Cober, A. V. Korolev, J. W. Strapp, and A. Tremblay, “Canadian Freezing Drizzle Experiments,” AIAA-99-0492 (1999).

  51. P. Jaunet, “The WMO Aviation Research Demonstration Project (AvRDP) at Paris Charle de Gualle Airport,” in Proceedings of the WMO Aeronautical Meteorology Scientific Conference 2017, Toulouse, France, November 6–10, 2017.

  52. R. K. Jeck, “Models and Characteristics of Freezing Rain and Freezing Drizzle for Aircraft Icing Application,” DOT/FAA/AR-09/45 (2010), http://www.tc.faa.gov/its/worldpac/techrpt/ar0945.pdf.

  53. H. Juntti, A.-M. Harri, E. Saltikoff, S. Pulkkinen, A. Hohti, R. Kaltenbock, J. Nuottokari, A. Blanco, and M. Hagen, “Probabilistic Winter Weather Nowcasting Support to Total Airport Management,” in Proceedings of the WMO Aeronautical Meteorology Scientific Conference 2017, Toulouse, France, November 6–10, 2017.

  54. S. D. Landolt, A. Gaydos, D. Porter, S. DiVito, D. Jacobson, A. J. Schwartz, G. Thompson, and J. Lave, “Inferring the Presence of Freezing Drizzle Using Archived Data from the Automated Surface Observing System (ASOS),” J. Atmos. Ocean. Tech., No. 12, 37 (2020).

    Article  Google Scholar 

  55. S. D. Landolt, J. S. Lave, J. S. Jacobson, A. Gaydos, S. DiVito, and D. Porter, “The Impacts of Automation on Present Weather-type Observing Capabilities across the Conterminous United States,” J. Appl. Meteorol. Climatol., No. 12, 58 (2019).

    Article  Google Scholar 

  56. J. Lu, J. Guo, J. Hu, L. Yang, and T. Feng, “Analysis of Ice Disasters on Ultra-high-voltage Direct-current Transmission Lines,” Nat. Hazards, 86 (2017).

    Article  Google Scholar 

  57. J. Lu, L. Li, X. Xu, and T. Feng, “An Analysis of the Reliability of a New Dataset of Transmission Line Icing Thickness in Southern China,” J. Appl. Meteorol. Climatol., No. 2, 58 (2019).

    Article  Google Scholar 

  58. J. Ludvgsen and P. Klaboe, “Extreme Weather Impacts on Freight Railways in Europe,” Nat. Hazards, 70 (2014).

    Article  Google Scholar 

  59. D. McCann, D. Lennartson, and J. Block, “Aircraft Specific In-flight Icing Forecast,” in 4th Aviation, Range and Aerospace Meteorology Special Symposium Atlanta, GA, 2014, Paper 4–1, https://www.researchgate.net/publication/272492623_Aircraft-Specific_In-flight_Icing_Forecasts.

  60. S. D. Miller, C. E. Weeks, R. G. Bullock, J. M. Forsythe, P. A. Kucera, B. G. Brown, C. A. Wolff, P. T. Partain, A. S. Jones, and D. B. Johnson, “Model-evaluation Tools for Three-dimensional Cloud Verification via Spaceborne Active Sensors,” J. Appl. Meteorol. Climatol., No. 9, 53 (2014).

    Article  Google Scholar 

  61. P. Minnis, W. Smith, L. Nguyen, M. M. Khaiyer, D. A. Spangenberg, P. W. Heck, R. Palikonda, B. C. Bernstein, and F. McDonough, “A Real-time Satellite Based Icing Detection System,” in Proceedings of the 14th International Conference on Clouds and Precipitation, Bologna, Italy, July 18–23, 2004.

  62. J. Molinder, H. Kornich, E. Olsson, and P. Hessling, “The Use of Uncertainty Quantification for the Empirical Modeling of Wind Turbine Icing,” J. Appl. Meteorol. Climatol., No. 9, 58 (2019).

  63. C. Morcrette, K. Brown, R. Bowyer, P. Gill, and D. Suri, “Development and Evaluation of In-flight Icing Index Forecast for Aviation,” Wea. Forecast., No. 3, 34 (2019).

    Article  Google Scholar 

  64. A. R. Naeger, B. A. Colle, and A. Molthan, “Evaluation of Cloud Microphysical Schemes for a Warm Frontal Snowband during the GPM Cold Season Precipitation Experiment (GCPEx),” Mon. Wea. Rev., No. 11, 145 (2017).

    Article  Google Scholar 

  65. E. Olsson, “A New Method to Forecast Aircraft Icing from High-resolution NWP,” in Proceedings of the WMO Aeronautical Meteorology Scientific Conference 2017, Toulouse, France, November 6–10, 2017.

  66. R. Rasmussen, M. Dixon, F. Hage, J. Cole, C. Wade, J. Tuttle, S. McGettigan, T. Carty, L. Stevenson, W. Fellner, S. Knight, E. Karplus, and N. Rehak, “Weather Support to Deicing Decision Making (WSDDM): A Winter Weather Nowcasting System,” Bull. Amer. Meteorol. Soc., No. 4, 82 (2000).

    Article  Google Scholar 

  67. H. D. Reeves and J. Waters, “Dual-polarized Radar Coverage in Terminal Airspaces and Its Effect on Interpretation of Winter Weather Signatures: Current Capabilities and Future Recommendations,” J. Appl. Meteorol. Climatol., No. 1, 58 (2019).

    Article  Google Scholar 

  68. K. J. Sanders and B. L. Barjenbruch, “Analysis of Ice-to-liquid Ratios during Freezing Rain and the Development of an Ice Accumulation Model,” Wea. Forecast., No. 4, 31 (2016).

    Article  Google Scholar 

  69. D. Serke, E. Holl, J. Bornar, A. Jordan, S. Abdo, K. Baker, T. Seitel, M. Nelson, R. Ware, F. McDonough, and M. Politovich, “Supercooled Liquid Water Content Profiling Case Studies with a New Vibrating Wire Sonde Compared to a Ground-based Microwave Radiometer,” Atmos. Res., 149 (2014).

    Article  Google Scholar 

  70. D. Serke, M. Politovich, A. Reehost, and A. Gaydos, “Use of the X-band Radar to Support the Detection of In-flight Icing Hazards by the NASA Icing Remote Sensing System,” NASA/TM—2009-215503, https://ntrs.nasa.gov/api/citations/20090018067/downloads/20090018067.pdf.

  71. S. Sim, J. Im, S. Park, H. Park, M. H. Ahn, and P.-W. Chan, “Icing Detection over East Asia from Geostationary Satellite Data Using Machine Learning Approaches,” Remote Sens., 10 (2018).

  72. W. Smith, P. Minnis, C. Fleeger, D. A. Spangenberg, and R. Palikonda, “Determining the Flight Icing Threat to Aircraft with Single-layer Cloud Parameters Derived from Operational Satellite Data,” J. Appl. Meteorol. Climatol., 51 (2012).

    Article  Google Scholar 

  73. L. Strauss, S. Serafin, and M. Dorninger, “Skill and Potential Economic Value of Forecasts of Ice Accretion on Wind Turbines,” J. Appl. Meteorol. Climatol., No. 12, 59 (2020).

    Article  Google Scholar 

  74. K. J. Sulia, Z. J. Lebo, V. M. Przybylo, and C. G. Schmitt, “A New Method for Ice–Ice Aggregation in the Adaptive Habit Model,” J. Atmos. Sci., No. 1, 78 (2021).

    Article  Google Scholar 

  75. G. Thompson, M. K. Politovich, and R. M. Rasmussen, “A Numerical Weather Model’s Ability to Predict Characteristics of Aircraft Icing Environments,” Wea. Forecast., No. 1, 32 (2017).

    Article  Google Scholar 

  76. B. A. Toms, J. B. Basara, and Y. Hong, “Usage of Existing Meteorological Data Networks for Parameterized Road Ice Formation Modeling,” J. Appl. Meteorol. Climatol., No. 7, 56 (2017).

    Article  Google Scholar 

  77. L. Wang, Ch. Li, Zh. Yao, Z. Zhao, Z. Han, and Q. Wei, “Application of Aircraft Observations over Beijing in Cloud Microphysical Property Retrievals from CloudSat,” Adv. Atmos. Sci., 31 (2014).

    Article  Google Scholar 

  78. M. Xu, G. Thompson, D. R. Adriaansen, and S. D. Landolt, “On the Value of Time-lag-ensemble Averaging to Improve Numerical Model Predictions of Aircraft Icing Conditions,” Wea. Forecast., No. 3, 34 (2019).

    Article  Google Scholar 

  79. L. Yang, M. Chen, X. Wang, L. Song, M. Yang, R. Qin, C. Cheng, and S. Li, “Classification of Precipitation Type in North China Using Model-based Explicit Fields of Hydrometeors with Modified Thermodynamic Conditions,” Wea. Forecast., No. 1, 36 (2021).

    Article  Google Scholar 

  80. I. Zawadski, F. Fabry, and W. Szyrmer, “Observation of Supercooled Water and Secondary Ice Generation by a Vertically Pointing X-band Doppler Radar,” Atmos. Res., 59–60 (2001).

    Article  Google Scholar 

  81. Zh. Zhao and L. Hengchi, “Aircraft Observations of Liquid and Ice in Midlatitude Mixed-phase Clouds,” Adv. Atmos. Sci., 31 (2014).

    Article  Google Scholar 

  82. Y. Zhou, Sh. Niu, and J. Lu, “The Influence of Freezing Drizzle on Wire Icing during Freezing Fog Events,” Adv. Atmos. Sci., 30 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ivanova.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 7, pp. 59-78. https://doi.org/10.52002/0130-2906-2021-7-59-78.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.R. Icing Effects on Air Transport Operation: State-of-the-art and Prediction Problems. Russ. Meteorol. Hydrol. 46, 461–473 (2021). https://doi.org/10.3103/S1068373921070050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921070050

Keywords

Navigation