Skip to main content

Methane Emission in the Russian Permafrost Zone and Evaluation of Its Impact on Global Climate


Satellite data on methane concentration in the lower troposphere and the dynamical permafrost model are used to analyze methane emissions in the permafrost zone. The sources of methane generation in different biochemical conditions in the river valleys, thermokarst lakes, wetlands, and lowlands are studied. The statistical relationships between their intensity and air temperature, precipitation, active layer thickness, and permafrost temperature are evaluated. The CMIP5 ensemble climate projection is used to estimate methane emission in the permafrost regions for the mid-21st century. Numerical experiments with the INM-CM48 Earth system model demonstrated that the projected 20 Tg/year increase in the methane emission will lead to less than 0.05°C global temperature rise. The uncertainty analysis of the results is accomplished and an alternative conceptual model of abrupt threshold changes in methane emission is proposed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. O. A. Anisimov, I. I. Borzenkova, S. A. Lavrov, and Yu. G. Strel’chenko, “The Current Dynamics of Submarine Permafrost and Methane Emission on the Shelf of the Eastern Arctic Seas in the Context of Past and Future Climate Change,” Led i Sneg, No. 2 (2012) [in Russian].

  2. O. A. Anisimov, Yu. G. Zaboikina, V. A. Kokorev, and L. N. Yurganov, “Possible Causes for Methane Release from the East Arctic Seas Shelf,” Led i Sneg, No. 2 (2014) [in Russian].

  3. O. A. Anisimov and V. A. Kokorev, “Comparative Analysis of Surface, Marine, and Satellite Measurements of Methane in the Lower Atmosphere over the Russian Arctic in a Changing Climate,” Issledovaniya Zemli iz Kosmosa, No. 2 (2015) [in Russian].

  4. O. A. Anisimov and V. A. Kokorev, “Climate in the Arctic Zone of Russia: Analysis of Modern Change and Model Projections for the 21st Century,” Vestnik MGU, No. 1 (2016) [in Russian].

  5. V. A. Kokorev, A. A. Ershova, and O. A. Anisimov, Permafrost Web Portal, [in Russian].

  6. S. A. Lavrov and O. A. Anisimov, “Modeling Hydrothermal Regime of Soils: Description of a Physically Complete Dynamic Model and Comparison of Simulations with Observations,” in Problems of Environmental Modeling and Ecosystem Monitoring, Ed. by Yu. A. Izrael (Planeta, Moscow, 2011) [in Russian].

  7. S. P. Smyshlyaev, E. A. Mareev, V. Ya. Galin, and P. A. Blakitnaya, “Modeling the Influence of Methane Emissions from Arctic Gas Hydrates on Regional Variations in Composition of the Lower Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 51 (2015) [Izv., Atmos. Oceanic Phys., No. 4, 51 (2015)].

  8. V. I. Chuprynin, S. A. Zimov, and L. A. Molchanova, “Modeling Thermal Regime of Soil with Account of Biological Source of Heat,” Kriosfera Zemli, No. 1,5 (2001) [in Russian].

  9. L. N. Yurganov, I. Leifer, and C. L. Myhre, “Seasonal and Interannual Variability of Atmospheric Methane over the Arctic Ocean from Satellite Data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2 (2016) [in Russian].

  10. N. Ahmed, “Seven Facts You Need to Know about the Arctic Methane Timebomb,” inThe Guardian (2013),

  11. O. Anisimov, “Potential Feedback of Thawing Permafrost to the Global Climate System through Methane Emission,” Environ. Res. Lett., 2 (2007).

  12. O. A. Anisimov and S. A. Reneva, “Permafrost and Changing Climate: The Russian Perspective,” Ambio, No. 4, 35 (2006).

  13. AWI Global Terrestrial Network for Permafrost (GTN-P) Database (AWI, Potsdam, 2019),

  14. T. R. Christensen, S. Rysgaard, J. Bendtsen, B. Else, R. N. Glud, J. van Huissteden, F. J. W. Parmentier, T. Sachs, and J. E. Vonk, “Arctic Carbon Cycling,” in Snow, Water, Ice and Permafrost in the Arctic (SWIPA) Report of Arctic Monitoring and Assessment Programme (AMAP) (2017).

  15. I. A. Dmitrenko, S. A. Kirillov, B. Tremblay, H. Kassens, O. A. Anisimov, S. Lavrov, S. O. Razumov, and M. N. Grigoriev, “Recent Changes in Shelf Hydrography in the Siberian Arctic: Potential for Subsea Permafrost Instability,” J. Geophys. Res., 116 (2011).

  16. B. Elberling, A. Michelsen, C. Schaedel, E. A. G. Schuur, H. H. Christiansen, L. K. Berg, M. P. Tamstorf, and C. Sigsgaard, “Long-term CO2 Production Following Permafrost Thaw,” Nature Climate Change,3 (2013).

  17. J. M. Frederick and B. A. Buffett, “Taliks in Relict Submarine Permafrost and Methane Hydrate Deposits: Pathways for Gas Escape under Present and Future Conditions,” J. Geophys. Res.: Earth Surface, No. 2, 119 (2014).

  18. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  19. D. V. Khvorostyanov, G. Krinner, P. Ciais, M. Heimann, and S. A. Zimov, “Vulnerability of Permafrost Carbon to Global Warming. Part I: Model Description and Role of Heat Generated by Organic Matter Decomposition,” Tellus B. Chem. and Phys. Meteorol., No. 2,60 (2008).

  20. O. V. Masyagina and O. V. Menyailo, “The Impact of Permafrost on Carbon Dioxide and Methane Fluxes in Siberia: A Meta-analysis,” Environ. Res.,182 (2020).

  21. Methane as an Arctic Climate Forcer: Arctic Monitoring and Assessment Programme (AMAP) (Oslo, Norway, 2015).

  22. P. P. Overduin, S. Liebner, C. Knoblauch, F. Gunther, S. Wetterich, L. Schirrmeister, H.-W. Hubberten, and M. N. Grigoriev, “Methane Oxidation Following Submarine Permafrost Degradation: Measurements from a Central Laptev Sea Shelf Borehole,” J. Geophys. Res.: Biogeosciences, No. 5,120 (2015).

  23. E. A. G. Schuur, A. D. McGuire, C. Schadel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat, and J. E. Vonk, “Climate Change and the Permafrost Carbon Feedback,” Nature, No. 9, 520 (2015).

  24. C. E. Schadel, E. A. G. Schuur, R. Bracho, B. Elberling, C. Knoblauch, H. S. van Lee, Y. Luo, G. R. Shaver, and M. R. Turetsky, “Circumpolar Assessment of Permafrost C Quality and Its Vulnerability over Time Using Long-term Incubation Data,” Glob. Change Biol., 20 (2014).

  25. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. G. Mazhitova, and S. A. Zimov, “Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region,” Global Biogeochem. Cycles, 23 (2009).

  26. B. F. Thornton, M. C. Geibel, P. M. Crill, C. Humborg, and C. M. Morth, “Methane Fluxes from the Sea to the Atmosphere across the Siberian Shelf Seas,” Geophys. Res. Lett., 43 (2016).

  27. E. M. Volodin, E. Mortikov, S. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. Gritsun, N. A. Diansky, A. V. Gusev, N. G. Iakovlev, A. A. Shestakova, and S. V. Emelina, “Simulation of the Modern Climate Using INM-CM48 Climate Model,” Russ. J. Num. Anal. Math. Model., No. 6, 33 (2018).

  28. K. M. W. Anthony, S. A. Zimov, G. Grosse, M. C. Jones, P. M. Anthony, F. S. I. Chapin, J. C. Finlay, M. C. Mack, S. Davydov, P. Frenzel, and S. Frolking, “A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch,” Nature, 511 (2014).

  29. S. A. Zimov, S. P. Davydov, and G. M. Zimova, “Permafrost Carbon: Stock and Decomposability of a Globally Significant Carbon Pool,” Geophys. Res. Lett., No. 20, 33 (2006).

  30. S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Permafrost and the Global Carbon Budget,” Science, No. 5780, 312 (2006).

Download references


The authors thank the specialists of State Hydrological Institute E.L. Zhil’tsova, K.O. Shapovalova, and A.A. Ershova for assistance in the calculations and the plotting of figures.


The research was supported by the Russian Foundation for Basic Research (grant 18-05-60005).

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. A. Anisimov.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 5, pp. 131–143.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anisimov, O.A., Zimov, S.A., Volodin, E.M. et al. Methane Emission in the Russian Permafrost Zone and Evaluation of Its Impact on Global Climate . Russ. Meteorol. Hydrol. 45, 377–385 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Methane
  • Permafrost zone
  • Climate change
  • Radiative forcing
  • Prediction