Skip to main content
Log in

Numerical Modeling of the Influence of Physical and Chemical Factors on the Interannual Variability of Antarctic Ozone

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The variability of Antarctic total column ozone in 1980–2018 is considered. The study analyzes trends in Antarctic total column ozone during the study period as well as the physical and chemical processes affecting the seasonal variability of total column ozone. The main attention is paid to the influence of dynamical processes on the stability of the Antarctic polar vortex, to the formation of polar stratospheric clouds, and to the influence of gas-phase and heterogeneous processes on the surface of polar stratospheric clouds and sulfate aerosol. The method of research is the analysis of the results of ground and satellite observations and numerical modeling of physical and chemical processes over the Antarctic using a global chemistry transport model with the dynamical parameters specified from reanalysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. L. Aleksandrov, Yu. A. Izrael, I. L. Karol’, and A. Kh. Khrgian, The Ozone Shield of the Earth and Its Changes (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

  2. G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Gidrometeoizdat, Leningrad, 1987) [Transl. from English].

  3. V. Ya. Galin, S. P. Smyshlyaev, and E. M. Volodin, “Combined Chemistry–Climate Model of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 4, 43 (2007)].

    Article  Google Scholar 

  4. I. L. Karol’, V. V. Rozanov, and Yu. M. Timofeev, Trace Gases in the Atmosphere (Gidrometeoizdat, Leningrad, 1983) [in Russian].

  5. S. P. Perov and A. Kh. Khrgian, Modern Problems of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1980) [in Russian].

  6. S. P. Smyshlyaev, Ya. A. Virolainen, M. A. Motsakov, Yu. M. Timofeev, A. V. Poberovskiy, and A. V. Polyakov, “Interannual and Seasonal Variations in Ozone in Different Atmospheric Layers over St. Petersburg Based on Observational Data and Numerical Modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 3, 53 (2017)].

    Article  Google Scholar 

  7. S. P. Smyshlyaev, V. Ya. Galin, E. M. Atlaskin, and P. A. Blakitnaya, “Simulation of the Indirect Impact That the 11-year Solar Cycle Has on the Gas Composition of the Atmosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 5, 46 (2010)].

    Article  Google Scholar 

  8. S. P. Smyshlyaev, V. Ya. Galin, G. Shaariibuu, and M. A. Motsakov, “Modeling the Variability of Gas and Aerosol Components in the Stratosphere of Polar Regions,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 3, 46 (2010)].

    Article  Google Scholar 

  9. S. P. Smyshlyaev, A. I. Pogoreltsev, V. Ya. Galin, and E. A. Drobashevskaya, “Influence of Wave Activity on the Composition of the Polar Stratosphere,” Geomagnetizm i Aeronomiya, No. 1, 56 (2016) [Geomagn. Aeron., No. 1, 56 (2016)].

    Article  Google Scholar 

  10. A. Kh. Khrgian, Physics of Atmospheric Ozone (Gidrometeoizdat, Leningrad, 1973) [in Russian].

  11. S. B. Andersen, E. C. Weatherhead, A. Stevermer, J. Austin, C. Bruhl, E. L. Fleming, J. de Grandpre, V. Grewe, I. Isaksen, G. Pitari, R. W. Portmann, B. Rognerud, J. E. Rosenfield, S. Smyshlyaev, T. Nagashima, G. J. M. Velders, D. K. Weisenstein, and J. Xia, “Comparison of Recent Modeled and Observed Trends in Total Column Ozone,” J. Geophys. Res., No. D1, 111 (2006).

  12. P. K. Bhartia, R. D. McPeters, L. E. Flynn, S. Taylor, N. A. Kramarova, S. Frith, B. Fisher, and M. DeLand, “Solar Backscatter UV (SBUV) Total Ozone and Profile Algorithm,” Atmos. Meas. Tech.,6 (2013).

    Article  Google Scholar 

  13. A. W. DeWolfe, A. Wilson, D. M. Lindholm, C. K. Pankratz, M. A. Snow, and T. N. Woods, “Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Data Center (LISIRD),” Amer. Geophys. Union, Fall Meeting 2010, Abstract No. GC21B-0881.

  14. R. de Zafra and S. Smyshlyaev, “On the Formation of HNO3 in the Antarctic Mid-to-upper Stratosphere in Winter,” J. Geophys. Res., 106 (2001).

  15. P. Hamil and O. B. Toon, “Polar Stratospheric Clouds and the Ozone Hole,” Physics Today, No. 12, 44 (1991).

  16. V. L. Harvey, R. B. Pierce, and M. H. Hitchman, “A Climatology of Stratospheric Polar Vortices and Anticyclones,” J. Geophys. Res., No. D20, 107 (2002).

  17. D. Ivy and S. Solomon, “Radiative and Dynamical Influences on Polar Stratospheric Temperature Trends,” J. Climate, 29 (2016).

    Article  Google Scholar 

  18. J. D. Jacob, Introduction to Atmospheric Chemistry (Princeton Univ. Press, 1999).

  19. M. Z. Jacobson, Fundamentals of Atmospheric Modeling (Cambridge Univ. Press, 2005).

  20. G. L. Manney, J. L. Sabutis, D. R. Allen, W. A. Lahoz, A. A. Scaife, C. E. Randall, S. Pawson, B. Naujokat, and R. Swinbank, “Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming,” J. Atmos. Sci., 62 (2005).

    Article  Google Scholar 

  21. R. D. McPeters, S. M. Hollandsworth, L. E. Flynn, J. R. Herman, and C. J. Seftor, “Long-term Ozone Trends Derived from the 16-year Combined Nimbus7/Meteor 3 TOMS Version 7 Record,” Geophys. Res. Lett.,23 (1996).

    Article  Google Scholar 

  22. R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, and T. Swissler, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Product’s User’s Guide, NASA Reference Publication 1384 (National Aeronautics and Space Administration, Washington, DC, 1996).

  23. R. D. McPeters and G. J. Labow, “An Assessment of the Accuracy of 14.5 Years of Nimbus 7 TOMS Version 7 Ozone Data by Comparison with the Dobson Network,” Geophys. Res. Lett., 23 (1996).

    Article  Google Scholar 

  24. P. A. Newman, J. S. Daniel, D. W. Waugh, and E. R. Nash, “A New Formulation of Equivalent Effective Stratosphere Chlorine (EESC),” Atmos. Chem. Phys., 7 (2007).

    Article  Google Scholar 

  25. K. Nishii and H. Nakamura, “Tropospheric Influence on the Diminished Antarctic Ozone Hole in September 2002,” Geophys. Res. Lett., 31 (2004).

  26. D. Peters and P. Vargin, “Impact of Extratropical Rossby Wave Trains on Planetary Wave Activity in the Polar Southern Lower Stratosphere in September 2002,” Tellus A, 67 (2015).

  27. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley and Sons, 1998).

  28. S. P. Smyshlyaev and M. A. Geller, “Analysis of SAGE-II Observations Using Data Assimilation by the SUNY-SPB Two-dimensional Model and Comparison to TOMS Data,” J. Geophys. Res. Atmos., No. D23,106 (2001).

  29. S. Solomon, “Stratospheric Ozone Depletion: A Review of Concepts and History,” Rev. Geophys., 37 (1999).

    Article  Google Scholar 

  30. S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, “On the Depletion of Antarctic Ozone,” Nature, 321 (1986).

    Article  Google Scholar 

  31. S. Solomon, D. Ivy, D. Kinnison, M. Mills, R. Neely, and A. Schmidt, “Emergence of Healing in the Antarctic Ozone Layer,” Science,10 (2016).

  32. WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2010 Global Ozone Research and Monitoring Project Report (World Meteorological Organization, Geneva, Switzerland, 2011).

  33. WMO: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report (World Meteorological Organization, Geneva, Switzerland, 2014).

  34. World Ozone and Ultraviolet Radiation Data Centre (WOUDC), http://woudc.org

Download references

Acknowledgements

The authors thank the reviewer for useful remarks.

Funding

The research was performed at the Russian State Hydrometeorological University in the framework of the Governmental Assignment of the Ministry of Education and Science (project 5.6493.2017/8.9). The studies of the influence of dynamical parameters on the ozone values in the polar regions were supported by the Russian Science Foundation (grant 19-17-00198), and the studies of the influence of chemical processes were supported by the Russian Foundation for Basic Research (grant 17-05-01277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Smyshlyaev.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 3, pp. 21–32.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smyshlyaev, S.P., Blakitnaya, P.A. & Motsakov, M.A. Numerical Modeling of the Influence of Physical and Chemical Factors on the Interannual Variability of Antarctic Ozone. Russ. Meteorol. Hydrol. 45, 153–160 (2020). https://doi.org/10.3103/S1068373920030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373920030024

Navigation