Skip to main content

Applying the Energy- and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part III. Modeling Mass Balance on the Surface of the Antarctic Ice Sheet

Abstract

The Earth system models have been actively developed during recent decades. They integrate the blocks describing the dynamics of the atmosphere, the ocean and the cryosphere. The Antarctic ice sheet (AIS) is one of the most important components of the Earth’s cryosphere. Therefore, the incorporation of the AIS model into the Earth system model will significantly improve the accuracy of reconstructions of climate parameters for paleoclimate studies and for climate predictions. This paper presents a description of the energy balance block of the AIS model. This is a continuation of our recent work on integration of the cryosphere block to the climate model. The testing of the block (the EWBM-A buffer model) was carried out using the climate data generated by the INMCM model developed in the Institute of Numerical Mathematics of RAS. The results of the calculations of the surface mass balance components of the Antarctic ice sheet are presented for the 30-year pre-industrial period and are compared with the recent results obtained in the literature.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. A. Ekaykin, V. A. Zarovchatsky, and V. Ya. Lipenkov, “Measuremets of Snow Sublimation on Vostok Station, Central Antarctica”, Problemy Arktiki i Antarktiki, No. 4 (2015) [in Russian].

    Google Scholar 

  2. 2.

    I. A. Korneva and O. O. Rybak, “Modeling Mass Balance of the Antarctic Ice Sheet for the Purpose of Monitoring and Prediction,” Systemy Kontrolya Okruzhayushchei Sredy, No. 3 (2016) [in Russian].

    Google Scholar 

  3. 3.

    I. A. Korneva and O. O. Rybak, “Evaluation of Surface Melt Rate Using a Mass Balance Model of the Antarctic Ice Sheet,” Systemy Kontrolya Okruzhayushchei Sredy, No. 4 (2017) [in Russian].

    Google Scholar 

  4. 4.

    V. M. Kotlyakov, Snow Cover of Antarctica and Its Role in Present-day Glaciation of the Continent (USSR Academy of Sciences Publ., Moscow, 1961) [in Russian].

    Google Scholar 

  5. 5.

    V. M. Kotlyakov, A. F. Glazovsky, and M. Y. Moskalevsky, “Dynamics of the Ice Mass in Antarctica in the Time of Warming,” Led i Sneg, No. 2 (2017) [in Russian].

    Google Scholar 

  6. 6.

    M. A. Levitan and G. L. Leychenkov, “History of Cenozoic Glaciation of Antarctica and Sedimentation in the Southern Ocean,” Litologia i Poleznye Iskopayemye, No. 2 (2014) [in Russian].

    Google Scholar 

  7. 7.

    Mathematical Modeling of the Earth System, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian].

    Google Scholar 

  8. 8.

    O. O. Rybak, “Mathematical Modeling of Continental Ice Sheets: Part 1. Model Architecture,” Kriosfera Zemli, No. 1, 12 (2008) [in Russian].

    Google Scholar 

  9. 9.

    O. O. Rybak, “Mathematical Modeling of Continental Ice Sheets: Part 2. Comparative Characteristics,” Kriosfera Zemli, No. 3, 12 (2008) [in Russian].

    Google Scholar 

  10. 10.

    O. O. Rybak and E. M. Volodin, “Applying of an Energy- and Water Balance Model for Incorporation of the Cryospheric Component into a Climatic Model. Part I. Description of the Model and Computed Climatic Field of Surface Air Temperature and Precipitation Rate,” Meteorol. Gidrol., No. 11 (2015) [Russ. Meteorol. Hydrol., No. 11, 40 (2015)].

    Google Scholar 

  11. 11.

    O. O. Rybak, E. M. Volodin, P. A. Morozova, and P. Huybrechts “Equilibrium State of the Greenland Ice Sheet in the Earth System Model,” Meteorol. Gidrol., No. 2 (2018) [Russ. Meteorol. Hydrol., No. 11, 43 (2018)].

    Google Scholar 

  12. 12.

    O. O. Rybak, E. M. Volodin, A. P. Nevecherja, and P. A. Morozova, “Applying of an Energy and Water Balance Model for Incorporation of the Cryospheric Component into a Climatic Model. Part II. Modelled Mass Balance on the Surface of the Greenland Ice Sheet,” Meteorol. Gidrol., No. 6 (2016) [Russ. Meteorol. Hydrol., No. 6, 41 (2016)].

    Google Scholar 

  13. 13.

    E. L. Andreas, “A Theory for the Scalar Roughness and the Scalar Transfer Coefficients over Snow and Sea Ice,” Boundary-Layer Meteorol., 38 (1987).

  14. 14.

    N. E. Barrand, D. G. Vaughan, N. Steiner N., et al., “Trends in Antarctic Peninsula Surface Melting Condition from Observations and Regional Climate Modeling,” J. Geophys. Res., 118 (2013).

  15. 15.

    R. Bindschadler and P. Vornberger, “Changes in the West Antarctic Ice Sheet since 1963 from Declassified Satellite Photography,” Science, No. 5351, 279 (1998).

    Google Scholar 

  16. 16.

    D. H. Bromwich, J. P. Nicolas, and A. J. Monaghan, “An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses,” J. Climate, 24 (2011).

  17. 17.

    J. C. Comiso, “Variability and Trends in Antarctic Surface Temperatures from In Situ and Satellite Infrared Measurements,” J. Climate, 13 (2000).

  18. 18.

    H. Conway, B. L. Hall, G. H. Denton, et al., “Past and Future Grounding-line Retreat of the West Antarctic Ice Sheet,” Science, No. 5438, 286 (1999).

    Google Scholar 

  19. 19.

    B. Denby and Smeets C. J. P. P., “Derivation of Turbulent Flux Profiles and Roughness Lengths from Katabatic Flow Dynamics,” J. Appl. Meteorol., No. 9, 39 (2000).

    Google Scholar 

  20. 20.

    S. J. Dery and M. K. Yau, “A Bulk Blowing Snow Model,” Boundary-Layer Meteorol., 93 (1999).

  21. 21.

    S. J. Dery and M. K. Yau, “Large-scale Mass Balance Effects of Blowing Snow and Surface Sublimation,” J. Geophys. Res., No. D23, 4679, 107 (2002).

    Article  Google Scholar 

  22. 22.

    J. Ettema, M. R. van den Broeke, van E. Meijgaard, and W. J. van de Berg, “Climate of the Greenland Ice Sheet Using a High-resolution Climate Model. Part 2: Near-surface climate and energy balance,” The Cryosphere, 4 (2010).

  23. 23.

    J. Ettema, M. R. van den Broeke, van E. Meijgaard, et al., “Climate of the Greenland Ice Sheet Using a High-resolution Climate Model. Part 1: Evaluation,” The Cryosphere, 4 (2010).

  24. 24.

    A. Ganju and H. S. Gusain, “Six Years Observations and Analysis of Radiation Parameters and Surface Energy Fluxes on Ice Sheet Near ‘Maitri’ Research Station, East Antarctica,” Proc. Indian Natn Sci. Acad., No. 2, 83 (2017).

    Google Scholar 

  25. 25.

    J. R. Garratt, The Atmospheric Boundary Layer (Cambridge University Press, Cambridge, UK, 1992).

    Google Scholar 

  26. 26.

    M. Glovinetto and H. Zwally, “Spatial Distribution of Net Surface Accumulation on the Antarctic Ice Sheet,” Ann. Glaciol., 31 (2000).

  27. 27.

    S. R. Hudson and R. E. Brandt, “A Look at the Surface-based Temperature Inversion on the Antarctic Plateau,” J. Climate, 18 (2005).

  28. 28.

    P. Huybrechts, “Sea-level Changes at the LGM from Ice-dynamic Reconstructions of the Greenland and Antarctic Ice Sheets during the Glacial Cycles,” Quatern. Sci. Rev., 21 (2002).

  29. 29.

    P. Huybrechts P. and J. de Wolde, “The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-century Climatic Warming,” J. Climate, 12 (1999).

  30. 30.

    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker et al. (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013).

    Google Scholar 

  31. 31.

    I. Janssens and P. Huybrechts, “The Treatment of Meltwater Retention in Mass-balance Parameterizations of the Greenland Ice Sheet,” Ann. Glaciol., 31 (2000).

  32. 32.

    J. C. King and J. Turner, Antarctic Meteorology and Climatology, 1st ed. (Cambridge University Press, Cambridge, UK, 1997).

    Book  Google Scholar 

  33. 33.

    P. Kuipers Munneke, G. Picard, M. R. van den Broeke, et al., “Insignificant Change in Antarctic Snowmelt Volume since 1979,” Geophys. Res. Lett., 39 (2012).

  34. 34.

    V. Laine, “Antarctic Ice Sheet and Sea Ice Regional Albedo and Temperature Change, 1981–2000, from AVHRR Polar Pathfinder Data,” Remote Sens. Environ., 112 (2008).

  35. 35.

    J. Lenaerts, M. Vizcaino, J. Fyke, et al., “Present-day and Future Antarctic Ice Sheet Climate and Surface Mass Balance in the Community Earth System Model,” Climate Dynamics, 47 (2016).

  36. 36.

    J. T. M. Lenaerts, M. R. van den Broeke, W. J. van de Berg, et al., “A New, High-resolution Surface Mass Balance Map of Antarctica (1979–2010) Based on Regional Atmospheric Climate Modeling,” Geophys, Res. Lett., No. L045012012, 39 (2012).

    Google Scholar 

  37. 37.

    M. N. A. Maris, B. de Boer, S. R. M. Ligtenberg, et al., “Modelling the Evolution of the Antarctic Ice Sheet since the Last Interglacial,” The Cryosphere, 8 (2014).

  38. 38.

    J. Naithani and H. Dutta, “Diurnal and Seasonal Variation in the Surface Layer Parameters Observed at Maitri Station, Antarctica,” in Fourteenth Indian Expedition to Antarctica, Scientific Report (Department of Ocean Development, Technical Publication No. 12, 1998).

    Google Scholar 

  39. 39.

    J. Oerlemans, “The Mass Balance of the Greenland Ice Sheet: Sensitivity to Climate Change as Revealed by Energy-balance Modeling,” The Holocene, 1 (1991).

  40. 40.

    A. J. Prata, “A New Longwave Formula for Estimating Downward Clear-sky Radiation at the Surface,” Quart. J. Roy. Meteorol. Soc., 122 (1996).

  41. 41.

    C. H. Reijmer, M. R. van den Broeke, X. Fettweis, et al., “Refreezing on the Greenland Ice Sheet: a Comparison of Parameterizations,” The Cryosphere, 6 (2012).

  42. 42.

    C. H. Reijmer, E. van Meijgaard, and M. R. van den Broeke, “Evaluation of Temperature and Wind over Antarctica in a Regional Atmospheric Climate Model Using 1 Year of Automatic Weather Station Data and Upper Air Observations,” J. Geophys. Res., No. D04103, 110 (2005).

    Google Scholar 

  43. 43.

    O. Rybak, E. Volodin, P. Morozova, and A. Nevecherja, “Incorporation of Ice Sheet Models into an Earth System Model: Focus on Methodology of Coupling,” J. Earth System Science, No. 2, 127 (2018).

    Google Scholar 

  44. 44.

    The IMBIE Team, A. Shepherd, et al., “Mass Balance of the Antarctic Ice Sheet from 1992 to 2017,” Nature, 558 (2018).

  45. 45.

    W. Thiery, I. V. Gorodetskaya, R. Bintanja, et al., “Surface and Snowdrift Sublimation at Princess Elisabeth Station, East Antarctica,” The Cryosphere, 6 (2012).

  46. 46.

    C. Tomasi, B. Petkov, E. Benedetti, et al., “Analysis of a 4 Year Radiosonde Data Set at Dome C for Characterizing Temperature and Moisture Conditions of the Antarctic Atmosphere,” J. Geophys. Res., No. D15304, 116 (2011).

    Google Scholar 

  47. 47.

    L. D. Trusel, K. E. Frey, and S. B. Das, “Antarctic Surface Melting Dynamics: Enhanced Perspectives from Radar Scatterometer Data,” J. Geophys. Res., No. F02023, 117 (2012).

    Google Scholar 

  48. 48.

    L. Trusel, K. Frey, S. Das, et al., “Satellite-based Estimates of Antarctic Surface Meltwater Fluxes,” Geophys. Res. Lett., 40 (2013).

  49. 49.

    J. Turner, R. A. Bindschadler, P. Convey, et al., Antarctic Climate Change and the Environment (Scientific Committee on Antarctic Research, Cambridge, 2009).

    Google Scholar 

  50. 50.

    J. Turner, T. A. Lachlan-Cope, G. J. Marshall, et al., “Spatial Variability of Antarctic Peninsula Net Surface Mass Balance,” J. Geophys. Res., No. D13, 107 (2002).

    Google Scholar 

  51. 51.

    D. van As, M. van den Broeke, C. Reijmer, and R. van de Wal, “The Summer Surface Energy Balance of the High Antarctic Plateau,” Boundary-Layer Meteorol., No. 2, 115 (2005).

    Google Scholar 

  52. 52.

    W. J. van de Berg, M. R. van den Broeke, C. H. Reijmer, and E. van Meijgaard, “Characteristics of the Antarctic Surface Mass Balance, 1958–2002, Using a Regional Atmospheric Climate Model,” Ann. Glaciol., 41 (2005).

  53. 53.

    W. J. van de Berg, M. R. van den Broeke, C. H. Reijmer, and E. van Meijgaard, “Reassessment of the Antarctic Surface Mass Balance Using Calibrated Output of a Regional Atmospheric Climate Model,” J. Geophys. Res., No. D11104, 111 (2006).

    Google Scholar 

  54. 54.

    M. R. van den Broeke, “Spatial and Temporal Variation of Sublimation on Antarctica: Results of a High-resolution General Circulation Model,” J. Geophys. Res., No. D25, 102 (1997).

    Google Scholar 

  55. 55.

    M. R. van den Broeke, G. Konig-Langlo, G. Picard, et al., “Surface Energy Balance, Melt and Sublimation at Neumayer Station, East Antarctica,” Antarctic Science, No. 1, 22 (2009).

    Google Scholar 

  56. 56.

    N. P. M. van Lipzig, J. C. King, T. A. Lachlan-Cope, and M. R. van den Broeke, “Precipitation, Sublimation, and Snow Drift in the Antarctic Peninsula Region from a Regional Atmospheric Model,” J. Geophys. Res., No. D24106, 109 (2004).

    Google Scholar 

  57. 57.

    J. M. van Wessem, S. R. M. Ligtenberg, C. H. Reijmer, et al., “The Modelled Surface Mass Balance of the Antarctic Peninsula at 5.5 km Horizontal Resolution,” The Cryosphere, 10 (2016).

  58. 58.

    J. M. van Wessem, W. J. van de Berg, B. P. Y. Noel, et al., “Modelling the Climate and Surface Mass Balance of Polar Ice Sheets Using RACMO2. Part 2: Antarctica (1979–2016),” The Cryosphere, 12 (2018).

  59. 59.

    D. G. Vaughan, J. L. Bamber, M. Giovinetto, et al., “Reassessment of Net Surface Mass Balance in Antarctica,” J. Climate, 12 (1999).

  60. 60.

    E. M. Volodin, N. A. Dianskii and A. V. Gusev, “Simulating Present-day Climate with the INMCM4.0 Coupled Model of the Atmospheric and Ocean General Circulations,” Izv. Atmos. Ocean Phys., 46 (2010).

  61. 61.

    M. M. Watkins, D. N. Wiese, D. N. Yuan, et al., “Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons,” J. Geophys. Res., Solid Earth, 120 (2015).

Download references

Acknowledgements

The authors are grateful to Prof. Michiel R. van den Broeke and to Dr. Willem Jan van de Berg (Institute of Marine and Atmospheric Research of Utrecht University, the Netherlands) for providing results of computations of surface mass balance and surface melting in Antarctica on RACMO2.3p2. The authors also appreciate the reviewer for helpful notes which allowed them to improve the manuscript and to specify tasks for future work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Korneva.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korneva, I.A., Rybak, O.O. & Volodin, E.M. Applying the Energy- and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part III. Modeling Mass Balance on the Surface of the Antarctic Ice Sheet. Russ. Meteorol. Hydrol. 44, 87–96 (2019). https://doi.org/10.3103/S1068373919020018

Download citation

Keywords

  • Antarctica
  • climate
  • surface mass balance
  • Antarctic ice sheet
  • mathematical model
  • Earth system model