Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 11, pp 743–755 | Cite as

Is There a Link between Arctic Sea Ice Loss and Increasing Frequency of Extremely Cold Winters in Eurasia and North America? Synthesis of Current Research

  • V. P. MeleshkoEmail author
  • V. M. Kattsov
  • V. M. Mirvis
  • A. V. Baidin
  • T. V. Pavlova
  • V. A. Govorkova
Article
  • 39 Downloads

Abstract

Studies dealing with impact of the Arctic warming and related sea ice decline on the Northern Hemisphere atmospheric circulation are considered. The causes of occurrence of extremely cold winters over the mid-latitude continents observed in the recent decades against the warming background are discussed. Several conceptions are outlined which explain potential reasons for occurrence of this phenomenon. The paper discusses impacts of the Arctic sea ice loss on the large-scale atmospheric circulation, oscillations of planetary waves. It also discusses issues related to sea ice changes in the Barents and Kara seas and their link to the frequency of extremely cold winters observed in Eurasia and North America, the contribution of internal atmospheric variability to the increasing frequency of cold weather, and the role of the Atlantic Multidecadal Oscillation in the Arctic sea ice reduction.

Keywords

Arctic amplification sea ice atmospheric circulation extremely cold weather planetary waves Atlantic Multidecadal Oscillation internal variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Semenov, I. I. Mokhov, and M. Latif, “Influence of Sea Ice Boundary and Sea Surface Temperature on Regional Climate in Eurasia during Recent Decades,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 4, 48 (2012)].Google Scholar
  2. 2.
    M. A. Alexander, U. S. Bhatt, J. E. Walsh, M. Timlin, and J. S. Miller, “The Atmospheric Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter,” J. Climate, 17 (2004).Google Scholar
  3. 3.
    J. Bader, D. S. M. Michel, K. I. Hodges, N. Keenlyside, S. osterhus, and M. Miles, “A Review on Northern Hemisphere Sea–ice, Storminess and the North Atlantic Oscillation: Observations and Projected Changes,” Atmos. Res., 101 (2011).Google Scholar
  4. 4.
    E. A. Barnes, “Revisiting the Evidence Linking Arctic Amplification to Extreme Weather in Mid–latitudes,” Geophys. Res. Lett., 40 (2013).Google Scholar
  5. 5.
    E. A. Barnes and L. M. Polvani, “CMIP5 Projections of Arctic Amplification, of the North American/North Atlantic Circulation, and of Their Relationship,” J. Climate, 28 (2015).Google Scholar
  6. 6.
    L. Bengtsson, V. Semenov, and O. M. Johannessen, “The Early Twentieth–century Warming in the Arctic—A Possible Mechanism,” J. Climate, 17 (2004).Google Scholar
  7. 7.
    R. Blackport and P. J. Kushner, “The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4,” J. Climate, 29 (2016).Google Scholar
  8. 8.
    J. Boe, A. Hall, and X. Qu, “Sources of Spread in Simulations of Arctic Sea Ice Loss over the Twenty–first Century. A Letter,” Climatic Change, 99 (2010).Google Scholar
  9. 9.
    D. Budikova, “Role of Arctic Sea Ice in Global Atmospheric Circulation: A Review,” Glob. Planet. Change, 68 (2009).Google Scholar
  10. 10.
    H. W. Chen, F. Zhang, and R. B. Alley, “The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss,” J. Climate, 29 (2016).Google Scholar
  11. 11.
    J. Cohen, J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland, and J. Jones, “Recent Arctic Amplification and Extreme Mid–latitude Weather,” Nature Geosci., 7 (2014).Google Scholar
  12. 12.
    D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge–Sanz, J.–J. Morcrette, B.–K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.–N. Thepaut, and F. Vitart, “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).Google Scholar
  13. 13.
    C. Deser, G. Magnusdottir, R. Saravanan, and A. Phillips, “The Effects of North Atlantic SST and Sea–ice Anomalies on the Winter Circulation in CCM3. Part II: Direct and Indirect Components of the Response,” J. Climate, 17 (2004).Google Scholar
  14. 14.
    C. Deser, R. A. Tomas, M. Alexander, and D. Lawrence, “The Seasonal Atmospheric Response to Projected Arctic Sea–ice Loss in the Late 21st Century,” J. Climate, 23 (2010).Google Scholar
  15. 15.
    C. Deser, R. A. Tomas, and L. Sun, “The Role of Ocean–Atmosphere Coupling in the Zonal–mean Atmospheric Response to Arctic Sea Ice Loss,” J. Climate, 28 (2015).Google Scholar
  16. 16.
    R. Doscher, T. Vihma, and E. Maksimovich, “Recent Advances in Understanding the Arctic Climate System State and Change from a Sea Ice Perspective: A Review,” Atmos. Chem. Phys., 14 (2014).Google Scholar
  17. 17.
    F. Fetterer, K. Knowles, W. Meier, and M. Savoie, Sea Ice Index, Version 2 [Monthly Sea Ice Extent from 1980 to 2015, Northern Hemisphere] (NSIDC: National Snow and Ice Data Center, Boulder, Colorado, USA, 2016, updated daily).Google Scholar
  18. 18.
    E. M. Fischer and R. Knutti, “Heated Debate on Cold Weather,” Nature Clim. Change, 4 (2014).Google Scholar
  19. 19.
    E. Frajka–Williams, C. Beaulieu, and A. Duchez, Emerging Negative Atlantic Multidecadal Oscillation Index in Spite of Warm Subtropics (2017), www.nature.com/scientificrepots.CrossRefGoogle Scholar
  20. 20.
    J. A. Francis and S. J. Vavrus, “Evidence Linking Arctic Amplification to Extreme Weather in Mid–latitudes,” Geophys. Res. Lett., 39 (2012).Google Scholar
  21. 21.
    J. A. Francis and S. J. Vavrus, “Evidence for a Wavier Jet Stream in Response to Rapid Arctic Warming,” Environ. Res. Lett., 10 (2015).Google Scholar
  22. 22.
    Y. Q. Gao, J. Sun, F. Li, S. He, S. Sandven, Q. Yan, Z. Zhang, K. Lohmann, N. Keenlyside, T. Furevik, and L. Suo, “Arctic Sea Ice and Eurasian Climate: A Review,” Adv. Atmos. Sci., No. 1, 32 (2015).Google Scholar
  23. 23.
    P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein, P. H. Worley, Z. Yang, and M. Zhang, “The Community Climate System Model Version 4,” J. Climate, 24 (2011).Google Scholar
  24. 24.
    M. Honda, J. Inoue, and S. Yamane, “Influence of Low Arctic Sea–ice Minima on Anomalously Cold Eurasian Winters,” Geophys. Res. Lett., 36 (2009).Google Scholar
  25. 25.
    J. W. Hurrel, Y. Kushnir, G. Ottersen, and M. Visbeck, “The North Atlantic Oscillation: Climatic Significance and Environmental Impact,” Amer. Geophys. Union, 134 (2013).Google Scholar
  26. 26.
    J. Inoue, E. H. Masatake, and T. Koutarou, “The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm–Arctic Cold–Siberian Anomaly,” J. Climate, 25 (2012).Google Scholar
  27. 27.
    O. M. Johannessen, S. I. Kuzmina, L. P. Bobylev, and M. W. Miles, “Surface Air Temperature Variability and Trends in the Arctic: New Amplification Assessment and Regionalization,” Tellus A, 68 (2016).Google Scholar
  28. 28.
    V. Kattsov, V. Ryabinin, J. Overland, M. Serreze, M. Visbeck, J. Walsh, W. Meier, and X. Zhang, “Arctic Sea Ice Change: A Grand Challenge of Climate Science,” J. Glaciol., 56 (2010).Google Scholar
  29. 29.
    J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. C. Bates, G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.–F. Lamarque, D. Lawrence, K. Lindsay, A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, and M. Vertenstein, “The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability,” Bull. Amer. Meteorol. Soc. (2015).Google Scholar
  30. 30.
    J.–S. Kug, J.–H. Jeong, Y.–S. Jang, B.–M. Kim, C. K. Folland, S.–K. Min, and S.–W. Son, “Two Distinct Influences of Arctic Warming on Cold Winters over North America and East Asia,” Nature Geosci., 8 (2015).Google Scholar
  31. 31.
    D. Li, R. Zhang, and T. R. Knutson, “On the Discrepancy between Observed and CMIP5 Multi–model Simulated Barents Sea Winter Sea Ice Decline,” Nature Commun., 8 (2017).Google Scholar
  32. 32.
    J. Liu, J. A. Curry, H. Wang, M. Song, and R. M. Horton, “Impact of Declining Arctic Sea Ice on Winter Snowfall,” Proc. Nat. Acad. Sci., No. 11, 109 (2012).Google Scholar
  33. 33.
    G. Magnusdottir, C. Deser, and R. Saravanan, “The Effect of North Atlantic SST and Sea Ice Anomalies on the Winter Circulation in CCM3. Part I: Main Features of the Response,” J. Climate, 17 (2004).Google Scholar
  34. 34.
    I. Mahlstein and R. Knutti, “September Arctic Sea Ice Predicted to Disappear near 2°C Global Warming above Present,” J. Geophys. Res. Atmos., 117 (2012).Google Scholar
  35. 35.
    K. E. McCusker, J. C. Fyfe, and M. Sigmond, “Twenty–five Winters of Unexpected Eurasian Cooling Unlikely due to Arctic Sea Ice Loss,” Nature. Geosci., 9 (2016).Google Scholar
  36. 36.
    V. P. Meleshko, O. M. Johannessen, A. V. Baidin, T. V. Pavlova, and V. A. Govorkova, “Arctic Amplification: Does It Impact the Polar Jet Stteam?, Tellus A, 68 (2016).Google Scholar
  37. 37.
    M. W. Miles, D. V. Divine, T. Furevik, E. Jansen, M. Moros, A. E. J. Ogilvie, “A Signal of Persistent Atlantic Multidecadal Variability in Arctic Sea Ice,” Geophys. Res. Lett., 41 (2014).Google Scholar
  38. 38.
    M. Mori, M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, “Robust Arctic Sea–ice Influence on the Frequent Eurasian Cold Winters in Past Decades,” Nature Geosci., 7 (2014).Google Scholar
  39. 39.
    R. B. Neale, J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, “The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments,” J. Climate, 26 (2013).Google Scholar
  40. 40.
    F. Ogawa, N. Keenlyside, Y. Gao, T. Koenigk, S. Yang, L. Suo, T. Wang, G. Gastineau, T. Nakamura, H.–N. Cheung, N.–E. Omrani, J. Ukita, and V. Semenov, “Evaluating Impacts of Recent Arctic Sea Ice Loss on the Northern Hemisphere Winter Climate Change,” Geophys. Res. Lett., 45 (2018).Google Scholar
  41. 41.
    I. H. Onarheim and M. Arthun, “Toward an Ice–free Barents Sea,” Geophys. Res. Lett., 44 (2017).Google Scholar
  42. 42.
    J. E. Overland and M. Wang, “When will the Summer Arctic be Nearly Sea Ice Free?", Geophys. Res. Lett., 40 (2013).Google Scholar
  43. 43.
    J. E. Overland, K. R. Wood, and M. Wang, “Warm Arctic–Cold Continents: Climate Impacts of the Newly Open Arctic Sea,” Polar Res., 30 (2011).Google Scholar
  44. 44.
    T. Palmer, “Record–breaking Winters and Global Climate Change,” Science, 344 (2014).Google Scholar
  45. 45.
    Y. Peings and G. Magnusdottir, “Response of the Wintertime Northern Hemisphere Atmospheric Circulation to Current and Projected Arctic Sea Ice Decline: A Numerical Study with CAM5,” J. Climate, 27 (2014).Google Scholar
  46. 46.
    V. Petoukhov and V. A. Semenov, “A Link between Reduced Barents–Kara Sea Ice and Cold Winter Extremes over Northern Continents,” J. Geophys. Res., 115 (2010).Google Scholar
  47. 47.
    I. V. Polyakov, R. V. Bekryaev, G. V. Alekseev, R. L. Colony, A. P. Maskshtas, and D. Walsh, “Variability and Trends of Air Temperature and Pressure in the Maritime Arctic, 1875–2000,” J. Climate, 16 (2003).Google Scholar
  48. 48.
    I. V. Polyakov, L. A. Timokhov, V. A. Alexeev, Sh. Bacon, I. A. Dmitrenko, L. Forter, I. E. Frolov, J.–C. Gascard, E. Hansen, V. V. Ivanov, S. Laxon, C. Mauritzen, D. Perovich, R. Shimada, H. L. Simmons, V. T. Sokolov, M. Steele, and J. Tool, “Arctic Ocean Warming Contributes to Reduced Polar Ice Cap,” J. Phys. Oceanogr., 40 (2010).Google Scholar
  49. 49.
    N. A. Rayner, D. E. Parkler, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperatures since the Late Nineteenth Century,” J. Geophys. Res., No. D14, 108 (2003).Google Scholar
  50. 50.
    J. A. Screen, “Arctic Amplification Decreases Temperature Variance in Northern Mid–to High–latitudes,” Nature Clim. Change, 4 (2014).Google Scholar
  51. 51.
    J. A. Screen, C. Deser, and I. Simmonds, “Local and Remote Controls on Observed Arctic Warming,” Geophys. Res. Lett., 39 (2012).Google Scholar
  52. 52.
    J. A. Screen, C. Deser, I. Simmonds, and R. Tomas, “Atmospheric Impacts of Arctic Sea–ice Loss, 1979–2009: Separating Forced Change from Atmospheric Internal Variability,” Climate Dynamics, 43 (2014).Google Scholar
  53. 53.
    J. A. Screens, C. Deser, D. M. Smith, X. Zhang, R. Blackport, P. J. Kushner, T. Oudar, K. E. McCusker, and L. Sun, “Consistency and Discrepancy in the Atmospheric Response to Arctic Sea–ice Loss across Climate Models,” Nature Geosci, 11 (2018).Google Scholar
  54. 54.
    J. A. Screen, C. Deser, and L. Sun, “Reduced Risk of North American Coid Extremes due to Continued Arctic Sea Ice Loss,” Bull. Amer. Meteoroi. Soc., 96 (2015).Google Scholar
  55. 55.
    J. A. Screen and I. Simmonds, “Exploring Links between Arctic Amplification and Mid–latitude Weather,” Geophys. Res. Lett., 40 (2013).Google Scholar
  56. 56.
    J. A. Screen and I. Simmonds, “The Central Roie of Diminishing Sea Ice in Recent Arctic Temperature Amplification,” Nature, 464 (2010).Google Scholar
  57. 57.
    I. A. Seierstad and J. Bader, “Impact of a Projected Future Arctic Sea Ice Reduction on Extratropical Storminess and the NAO,” Climate Dynamics, 33 (2009).Google Scholar
  58. 58.
    V. A. Semenov and L. Bengtsson, “Modes of the Wintertime Arctic Temperature Variability,” Geophys. Res. Lett., 30 (2003).Google Scholar
  59. 59.
    M. C. Serreze and R. G. Barry, “Processes and Impacts of Arctic Amplification: A Research Synthesis,” Global and Planetary Change, 77 (2011).Google Scholar
  60. 60.
    D. M. Smith, J. A. Screen, C. Deser, J. Cohen, C. Fyfe John, J. Garcia–Serrano, T. Jung, V. Kattsov, D. Matei, R. Msadek, Y. Peings, M. Sigmond, J. Ukita, J.–H. Yoon, and X. Zhang, “The Poiar Amplification Model Intercomparison Project (PAMIP) Contribution to CMIP6: Investigating the Causes and Consequences of Poiar Amplification,” Geosci. Model Dev. (2018).Google Scholar
  61. 61.
    J. C. Stroeve, V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Hoiland, and W. N. Meier, “Trends in Arctic Sea Ice Extent from CMIP5, CMIP3 and Observations,” Geophys. Res. Lett. 39 (2012).Google Scholar
  62. 62.
    L. Sun, J. Perlwitz, and M. Hoerling, “What Caused the Recent "Warm Arctic, Coid Continents" Trend Pattern in Winter Temperatures?,” Geophys. Res. Lett., 43 (2016).Google Scholar
  63. 63.
    N. C. Swart, J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, “Influence of Internal Variability on Arctic Sea–ice trends,” Nature Clim. Change, 5 (2015).Google Scholar
  64. 64.
    K. Takaya and H. Nakamura, “Geographical Dependence of Upper–level Blocking Formation Associated with Intraseasonal Amplification of the Siberian High,” J. Atmos. Sci., 62 (2005).Google Scholar
  65. 65.
    D. W. J. Thompson and J. M. Wallace, “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields,” Geophys. Res. Lett., 25 (1998).Google Scholar
  66. 66.
    T. Vihma, “Effects of Arctic Sea Ice Decline on Weather and Climate: A Review,” Surv. Geophys., 35 (2014).Google Scholar
  67. 67.
    J. M. Wallace, “North Atlantic Oscillation/Annular Mode: Two Paradigms–One Phenomenon,” Quart. J. Roy. Meteorol. Soc., 126 (2000).Google Scholar
  68. 68.
    J. M. Wallace, I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, “Global Warming and Winter Weather,” Science, 343 (2014).Google Scholar
  69. 69.
    J. E. Walsh, “Intensified Warming of the Arctic: Causes and Impacts on Middle Latitudes,” Global and Planetary Change, 117 (2014).Google Scholar
  70. 70.
    S. Yang and J. H. Christensen, “Arctic Sea Ice Reduction and European Coid Winters in CMIP5 Climate Change Experiments,” Geophys. Res. Lett., 39 (2012).Google Scholar
  71. 71.
    R. Zhang, “Mechanisms for Low–frequency Variability of Summer Arctic Sea Ice Extent,” Proc. Nat. Acad. Sci., 112 (2015).Google Scholar
  72. 72.
    R. Zhang and T. R. Knutson, “The Roie of Global Climate Change in the Extreme Low Summer Arctic Sea Ice Extent in 2012 (in Explaining Extreme Events of 2012 from a Climate Perspective),” Bull. Amer. Meteoroi. Soc., 94 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. P. Meleshko
    • 1
    Email author
  • V. M. Kattsov
    • 1
  • V. M. Mirvis
    • 1
  • A. V. Baidin
    • 1
  • T. V. Pavlova
    • 1
  • V. A. Govorkova
    • 1
  1. 1.Voeikov Main Geophysical ObservatorySt. PetersburgRussia

Personalised recommendations