Russian Meteorology and Hydrology

, Volume 43, Issue 3, pp 152–160 | Cite as

Estimating the Number of Cloud Layers through Radiosonde Data from Russian Aerological Stations for 1964–2014

Article
  • 3 Downloads

Abstract

Radiosonde data are used for the period of 1964–2014 and the method that determines the boundaries and cloud amount based on the profiles of temperature and humidity [23]; long-period statistical characteristics are computed for the cloud layer number for different altitude ranges from the ground to 10 km. The study is performed for the Russian aerological stations located at different latitudes and climate zones. To specify the spatiotemporal features of the atmosphere layering into cloud layers and cloudless layers between them, the estimates of monthly mean, seasonal mean, and annual mean values of cloud layer number as well as of their standard deviations are computed, and the amplitude of their variations is determined. The results qualitatively agree with the data of aircraft-based sounding of the atmosphere as well as with the data of radars and experiments with free balloons.

Keywords

Russian aerological stations radiosonde data cloud layer number vertical distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Aldukhov, V. A. Orzhekhovskaya, T. O. Sadovnikova, and T. V. Rudenkova, AEROSTAB: Archive of Current Aerological Information. Description of the Archive (VNIIGMI-MTsD, Obninsk, 1990) [in Russian].Google Scholar
  2. 2.
    O. A. Aldukhov and I. V. Chernykh, Methods of Analysis and Interpretation of Upper-air Sounding Data, Vol. 1: Quality Control and Data Processing (VNIIGMI-MTsD, Obninsk, 2013) [in Russian].Google Scholar
  3. 3.
    O. A. Aldukhov and I. V. Chernykh, Methods ofAnalysis and Interpretation of Upper-air Sounding Data, Vol. 2: Retrieved Cloud Layers (VNIIGMI-MTsD, Obninsk, 2013) [in Russian].Google Scholar
  4. 4.
    O. A. Aldukhov and I. V. Chernykh, Methods of Analysis and Interpretation of Upper-air Sounding Data, Vol. 3: Humidity and Temperature in the Atmosphere: Statistical Characteristics (VNIIGMI-MTsD, Obninsk, 2015) [in Russian].Google Scholar
  5. 5.
    D. P. Bespalov, A. M. Devyatkin, Yu. A. Dovgalyuk, et al., Cloud Atlas (D'ART, St. Petersburg, 2011) [in Russian].Google Scholar
  6. 6.
    S. P. Beschastnov, G. M. Grechko, A. S. Gurvich, et al., “The Structure of Temperature Field from Refraction Observations at Meteorological Tower,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 20 (1984) [in Russian].Google Scholar
  7. 7.
    G. M. Grechko, A. S. Gurvich, V. Kan, et al., “Observations of Star Scintillations Caused by Temperature Variations at the Altitude of 40-50 km,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 29 (1993) [in Russian].Google Scholar
  8. 8.
    G. M. Grechko, A. S. Gurvich, Yu. V. Romanenko, et al., “Layered Structure of Air Temperature Field According to Refraction Measurements from Saluyt-6 Orbital Station,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 17 (1981) [in Russian].Google Scholar
  9. 9.
    V. A. Gordin, Mathematical Problems of Hydrodynamic Weather Forecasting. Computational Aspects (Gidrometeoizdat, Leningrad, 1987) [in Russian].Google Scholar
  10. 10.
    L. S. Dubrovina, Clouds and Precipitation from Aircraft Sounding Data (Gidrometeoizdat, Leningrad, 1982) [in Russian].Google Scholar
  11. 11.
    T. V. Rudenkova, “Archiving Format of Current Aerological Data Transmitted via Communication Channels for PC,” Trudy VNIIGMI-MTsD, No. 174 (2010) [in Russian].Google Scholar
  12. 12.
    A. M. Sterin, “Analysis of Linear Trends in Free Atmo sphere Temperature Series, 1958-1997,” Meteorol. Gidrol., No. 5 (1999) [Russ. Meteorol. Hydrol., No. 5 (1999)].Google Scholar
  13. 13.
    S. B. Stechkin and Yu. N. Subbotin, Splines in Numerical Mathematics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  14. 14.
    E. M. Feigel'son, Radiant Heat Exchange and Clouds (Gidrometeoizdat, Leningrad, 1970) [in Russian].Google Scholar
  15. 15.
    M. B. Fridzon, Methodology of Upper-air Sounding and Reliability of Data on Vertical Profiles of Temperature and Humidity to the Height of 40 km, Abstract of the Doctor's Thesis (Moscow, 2004).Google Scholar
  16. 16.
    A. Kh. Khrgian and N. I. Novozhilov, Cloud Atlas (Gidrometeoizdat, Leningrad, 1978) [in Russian].Google Scholar
  17. 17.
    I. V. Chernykh and O. A. Aldukhov, “Vertical Distribution of Cloud Layers from Atmospheric Radiosounding Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 40 (2004) [Izv., Atmos. Oceanic Phys., No. 1, 40 (2004)].Google Scholar
  18. 18.
    I. V. Chernykh and O. A. Aldukhov, “Long-term Estimates of Parameters of the Vertical Distribution of Cloud Layers from Atmospheric Radiosounding Data,” Meteorol. Gidrol., No. 4 (2016) [Russ. Meteorol. Hydrol., No. 4, 41 (2016)].Google Scholar
  19. 19.
    N. P. Shakina, E. N. Skriptunova, and A. R. Ivanova, “Conditions Associated with Freezing Precipitation at Airports of Russia and the CIS. 1. Airports of the Moscow Air Zone,” Meteorol. Gidrol., No. 6 (2003) [Russ. Meteorol. Hydrol., No. 6 (2003)].Google Scholar
  20. 20.
    R. H. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufman Publishers, Los Altos, 1987).Google Scholar
  21. 21.
    I. V. Chernykh, O. A. Alduchov, and R. E. Eskridge, “Trends in Low and High Cloud Boundaries and Errors in Height Determination of Cloud Boundaries,” Bull. Amer. Meteorol. Soc., 82 (2001).Google Scholar
  22. 22.
    I. V. Chernykh, O. A. Alduchov, and R. E. Eskridge, “Reply to Comments of D. J. Seidel and I. Durre on “Trends in Low and High Cloud Boundaries and Errors in Height Determination of Cloud Boundaries”,” Bull. Amer. Meteorol. Soc., 84 (2003).Google Scholar
  23. 23.
    I. V. Chernykh and R. E. Eskridge, “Determination of Cloud Amount and Level from Radiosonde Soundings,” J. Appl. Meteorol., 35 (1996).Google Scholar
  24. 24.
    R. E. Eskridge, O. A. Alduchov, I. V. Chernykh, et al., “A Comprehensive Aerological Reference Dataset (CARDS): Rough and Systematic Errors,” Bull. Amer. Meteorol. Soc., 76 (1995).Google Scholar
  25. 25.
    N. Ferlay, F. Thieuleux, C. Cornet, et al., “Toward New Inferences about Cloud Structures from Multidirectional Measurements in the Oxygen A Band: Middle-of-cloud Pressure and Cloud Geometrical Thickness from POLDERS/ PARASOL,” J. Appl. Meteorol. Climatol., 49 (2010).Google Scholar
  26. 26.
    P. J. McBride, K. S. Schmidt, P. Pilewskie, et al., “CalNex Cloud Properties Retrieved from a Ship-based Spectrometer and Comparssons with Satrltite and Aircraft Retrieved Cloud Properties,” J. Geophys. Res., Atmos., No. D21, 117 (2012).Google Scholar
  27. 27.
    C. M. Naud, J. P. Muller, and E. E. Clothiaux, “Comparison between Active Sensor and Radiosonde Cloud Boundaries over the ARM Southern Great Planes Site,” J. Geophys. Res., No. D4, 108 (2003).Google Scholar
  28. 28.
    W. B. Rossow, Y. Zhang, and J. Wang, “A Statistical Model of Cloud Vertical Structure Based on Reconciling Cloud Layer Amounts Inferred from Satellites and Radiosonde Humidtty Profiles,” J. Climate, 18 (2005).Google Scholar
  29. 29.
    J. Wang and W. B. Rossow, “Determination of Cloud Vertical Structure from Upper-air Observations,” J. Appl. Meteorol., 34 (1995).Google Scholar
  30. 30.
    J. Wang, W. B. Rossow, and J. Zhang, “Cloud Vertical Structure and Its Variations from a 20-yr Global Rawinsonde Dataset,” J. Climate, 13 (2000).Google Scholar
  31. 31.
    World Meteorological Organization. International Cloud Atlas (WMO, Geneva, 1956).Google Scholar
  32. 32.
    J. Zhang, Z. Li, H. Chen, and M. Cribb, “Validation of Radiosonde-based Cloud Layer Detection Method against a Ground-based Remote Sensing Method at Multiple ARM Sites,” J. Geophys. Res., Atmos., 118 (2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.All-Russian Research Institute of Hydrometeorological Information–World Data CenterObninskRussia

Personalised recommendations