Skip to main content
Log in

Assessing the probability of El Niño-related weather and climate anomalies in Russian regions

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The risk and predictability of weather and climate anomalies in Russian regions associated with differen types of El Niño are estimated using long-term data (1891-2015) on surface air temperature, precipitation, and indices of drought and excessive moisture. The probability of anomalies of these parameters in spring and summer months is estimated for different phase transitions of El Niño events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Arpe, L. Bengtsoon, G. S. Golitsyn, et al., “Analysis and Modeling of the Hydrological Regime Variations in the Caspian Sea Basin,” Dokl. Akad. Nauk, No. 2, 366 (1999) [Dokl. Earth Sci., 366 (1999)].

    Google Scholar 

  2. V. I. Byshev, Synoptic and Large-scale Variability of the Ocean and Atmosphere (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  3. Roshydromet Second Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation, Chapter 5.3 (Roshydromet, Moscow, 2014) [in Russian].

  4. G. V. Gruza, E. Ya. Ran’kova, L. K. Kleshchenko, and L. N. Aristova, “A Relationship between Climate Anomalies over Russia and El Niño-Southern Oscillation Events,” Meteorol. Gidrol., No. 5 (1999) [Russ. Meteorol. Hydrol., No. 5 (1999)].

    Google Scholar 

  5. I. V. Zheleznova and D. Yu. Gushchina, “The Response of Global Atmospheric Circulation to Two Types of El Nino,” Meteorol. Gidrol., No. 3 (2015) [Russ. Meteorol. Hydrol., No. 3, 40 (2015)].

    Google Scholar 

  6. V. D. Kaznacheeva and I. V. Trosnikov, “Estimation of Dependence of Seasonal Predictability of Meteorological Quantities in Different Regions of the Northern Hemisphere on the El Niño-Southern Oscillation Phenomenon,” Meteorol. Gidrol., No. 2 (2008) [Russ. Meteorol. Hydrol., No. 2, 33 (2008)].

    Google Scholar 

  7. V. D. Kaznacheeva and I. V. Trosnikov, “Assessment of the Dependence of the Skill and Predictability of Seasonal Forecasts on Boundary Conditions of the Model,” Meteorol. Gidrol., No. 10 (2009) [Russ. Meteorol. Hydrol., No. 10, 34 (2009)].

    Google Scholar 

  8. A. V. Meshcherskaya, V. M. Mirvis, and M. P. Golod, “Drought of 2010 against a Background of Long-term Variations of Aridity in Basic Grain-producing Regions in the European Part of Russia,” Trudy GGO, No. 563 (2011) [in Russian].

    Google Scholar 

  9. I. I. Mokhov, “Hydrological Anomalies and Tendencies of Change in the Basin of the Amur River under Global Warming,” Dokl. Akad. Nauk, No. 5, 455 (2014) [Dokl. Earth Sci., No. 2, 455 (2014)].

    Google Scholar 

  10. I. I. Mokhov, “Action as an Integral Characteristic of Climatic Structures: Estimates for Atmospheric Blockings,” Dokl. Akad. Nauk, No. 3, 409 (2006) [Dokl. Earth Sci., No. 6, 409 (2006)].

    Google Scholar 

  11. I. I. Mokhov, “Detection of the Areas of the World Ocean Impact on the Regional Climate in Russia,” in Natural Environment of Russia: Adaptation Processes under Climate Change and Nuclear Power Development (IFZ RAN, Moscow, 2014) [in Russian].

    Google Scholar 

  12. I. I. Mokhov, “Specific Features of the 2010 Summer Heat Formation in the European Territory of Russia in the Context of General Climate Changes and Climate Anomalies,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 6, 47 (2011)].

    Google Scholar 

  13. I. I. Mokhov, M. G. Akperov, M. A. Prokof’eva, et al., “Blockings in the Northern Hemisphere and Euro-Atlantic Region: Estimates of Changes from Reanalysis Data and Model Simulations,” Dokl. Akad. Nauk, No. 5, 449 (2013) [Dokl. Earth Sci., No. 2, 449 (2013)].

    Google Scholar 

  14. I. I. Mokhov, J.-L. Dufresne, H. Le Treut, et al., “Changes in Drought and Bioproductivity Regimes in Land Ecosystems in Regions of Northern Eurasia Based on Calculations Using a Global Climatic Model with Carbon Cycle,” Dokl. Akad. Nauk, No. 6, 405 (2005) [Dokl. Earth Sci., No. 9, 405 (2005)].

    Google Scholar 

  15. I. I. Mokhov, A. V. Eliseev, and D. V. Khvorost’yanov, “Evolution of the Characteristics of Interannual Climate Variability Associated with the El Niño and La Niña Phenomena,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 36 (2000) [Izv., Atmos. Oceanic Phys., No. 6, 36 (2000)].

    Google Scholar 

  16. I. I. Mokhov and V. A. Semenov, “Weather and Climate Anomalies in Russian Regions Related to Global Climate Change,” Meteorol. Gidrol., No. 2 (2016) [Russ. Meteorol. Hydrol., No. 2, 41 (2016)].

    Google Scholar 

  17. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, et al., “Connection between Eurasian and North Atlantic Climate Anomalies and Natural Variations in the Atlantic Thermohaline Circulation Based on Long-term Model Calculations,” Dokl. Akad. Nauk, No. 5, 419 (2008) [Dokl. Earth Sci., No. 3, 419 (2008)].

    Google Scholar 

  18. I. I. Mokhov and D. A. Smirnov, “Study of the Mutual Influence of the El Niño-Southern Oscillation Processes and the North Atlantic and Arctic Oscillations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 5, 42 (2006)].

    Google Scholar 

  19. I. I. Mokhov and D. A. Smirnov, “Relation between the Variations in the Global Surface Temperature, El Niño/La Niña Phenomena, and the Atlantic Multidecadal Oscillation,” Dokl. Akad. Nauk, No. 5, 467 (2016) [Dokl. Earth Sci., No. 2, 467 (2016)].

    Google Scholar 

  20. I. I. Mokhov, D. A. Smirnov, P. I. Nakonechnyi, et al., “Relationship between El Niño/Southern Oscillation and the Indian Monsoon,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].

    Google Scholar 

  21. I. I. Mokhov and A. V. Timazhev, “Climatic Anomalies in Eurasia from El Niño/La Niña Effects,” Dokl. Akad. Nauk, No. 2, 453 (2013) [Dokl. Earth Sci., No. 1, 453 (2013)].

    Google Scholar 

  22. I. I. Mokhov and A. V. Timazhev, “Model Assessment of Possible Changes of Atmospheric Blockings in the Northern Hemisphere under RCP Scenarios of Anthropogenic Forcings,” Dokl. Akad. Nauk, No. 2, 460 (2015) [Dokl. Earth Sci., No. 1, 460 (2015)].

    Google Scholar 

  23. I. I. Mokhov and A. V. Timazhev, “Assessment of the Predictability of Climate Anomalies in Connection with El Nino Phenomena,” Dokl. Akad. Nauk, No. 6, 464 (2015) [Dokl. Earth Sci., No. 2, 464 (2015)].

    Google Scholar 

  24. I. I. Mokhov and V. Ch. Khon, “Interannual Variability and Long-term Tendencies of Change in Atmospheric Centers of Action in the Northern Hemisphere: Analyses of Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 41 (2005) [Izv., Atmos. Oceanic Phys., No. 6, 41 (2005)].

    Google Scholar 

  25. I. I. Mokhov, V. Ch. Khon, A. V. Timazhev, et al., “Hydrological Anomalies and Trends in the Amur River Basin due to Climate Change,” in Extreme Floods in the Amur River Basin: Causes, Forecasts, and Recommendations (Roshydromet, Moscow, 2014) [in Russian].

    Google Scholar 

  26. E. S. Nesterov, The North Atlantic Oscillation: Atmosphere and Ocean (Triadaltd., Moscow, 2013) [in Russian].

    Google Scholar 

  27. A. B. Polonskii and D. V. Basharin, “On the Influence of the North Atlantic and Southern Osciltations on the Variability of Air Temperature in the Mediterranean-European Region,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 38 (2002) [Izv., Atmos. Oceanic Phys., No. 1, 38 (2002)].

    Google Scholar 

  28. V. Ch. Khon and I. I. Mokhov, “Model Estimates for the Sensitivity of Atmospheric Centers of Action to Global Climate Changes,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 6, 42 (2006)].

    Google Scholar 

  29. K. Arpe, L. Bengtsson, G. S. Golitsyn, et al., “Connection between Caspian Sea Level Variability and ENSO,” Geophys. Res. Lett., No. 17, 27 (2000).

    Google Scholar 

  30. K. Ashok and T. Yamagata, “The El Niño with a Difference,” Nature, 461 (2009).

    Google Scholar 

  31. J. Bjerknes, “A Possible Response of the Atmospheric Hadley Circulation to Equatorial Anomalies of Ocean Temperature,” Tellus, 18 (1966).

    Google Scholar 

  32. J. Bjerknes, “Atmospheric Teleconnections from the EquatorialPacific,” J. Phys. Oceanogr., No. 3, 97 (1969).

    Google Scholar 

  33. S. Bronnimann, “Impact of El Niño-Southern Oscillation on European Climate,” Rev. Geophys., 45 (2007).

    Google Scholar 

  34. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, Cambridge, 2013).

  35. D. P. Dee et al., “The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).

    Google Scholar 

  36. Q. Ding, B. Wang, J. M. Wallace, and G. Branstator, “Tropical-extratropical Teleconnections in Boreal Summer: Observed Interannual Variability,” J. Climate, 24 (2011).

    Google Scholar 

  37. K. Fraedrich and K. Muller, “Climate Anomalies in Europe Associated with ENSO Extremes,” Int. J. Climatol., No. 1, 12 (1992).

    Google Scholar 

  38. I. Herceg Bulic and F. Kucharski, “Delayed ENSO Impact on Spring Precipitation over North/Atlantic European Region,” Climate Dynamics, 38 (2012).

    Google Scholar 

  39. M. M. Hurwitz, N. Calvo, C. I. Garfinkel, et al., “Extra-tropical Atmospheric Response to ENSO in the CMIP5 Models,” Climate Dynamics, 43 (2014).

    Google Scholar 

  40. S. Jevrejeva, J. C. Moore, and A. Grinsted, “Oceanic and Atmospheric Transport of Multiyear El Niño-Southern Oscillation (ENSO) Signatures to Polar Regions,” Geophys. Res. Lett., 31 (2004).

    Google Scholar 

  41. A. V. Meshcherskaya and V. G. Blazhevich, “The Drought and Excessive Moisture Indices in a Historical Perspective in the Principal Grain-producing Regions of the Former Soviet Union,” J. Climate, 10 (1997).

    Google Scholar 

  42. I. I. Mokhov, D. V. Khvorostyanov, and A. V. Eliseev, “Decadal and LongerTerm Changes in El Niño-Southern Oscillation Characteristics,” Int. J. Climatol., 24 (2004).

    Google Scholar 

  43. I. I. Mokhov and D. A. Smirnov, “El Niño-Southern Oscillation Drives North Atlantic Oscillation as Revealed with Nonlinear Techniques from Climatic Indices,” Geophys. Res. Lett., 33 (2006).

    Google Scholar 

  44. I. I. Mokhov, D. A. Smirnov, P. I. Nakonechny, et al., “Alternating Mutual Influence of El Niño/Southern Oscillation and Indian Monsoon,” Geophys. Res. Lett., 38 (2011).

    Google Scholar 

  45. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in Atmospheric Blocking Characteristics within Euro-Atlantic Region and Northern Hemisphere as a Whole in the 21st Century from Model Simulations Using RCP Anthropogenic Scenarios,” Global and Planetary Change, 122 (2014).

    Google Scholar 

  46. J. A. Renwick and J. M. Wallace, “Relationships between North Pacific Wintertime Blocking, El Niño, and the PNA Pattern,” Mon. Wea. Rev., 124 (1996).

    Google Scholar 

  47. K. E. Trenberth, G. W. Branstator, D. Karoly, et al., “Progress during TOGA in Understanding and Modeling Global Teleconnections Associated with Tropical Sea Surface Temperatures,” J. Geophys. Res., 103 (1998).

    Google Scholar 

  48. J. M. Wiedenmann, A. R. Lupo, I. I. Mokhov, and E. A. Tikhonova, “The Climatology of Blocking Anticyclones for the Northern and Southern Hemispheres: Block Intensity as a Diagnostic,” J. Climate, No. 23, 15 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Additional information

Original Russian Text © I.I. Mokhov, A.V. Timazhev, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 10, pp. 22-33.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Timazhev, A.V. Assessing the probability of El Niño-related weather and climate anomalies in Russian regions. Russ. Meteorol. Hydrol. 42, 635–643 (2017). https://doi.org/10.3103/S1068373917100028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373917100028

Keywords

Navigation