Skip to main content
Log in

Three-dimensional semi-empirical climate model of water vapor distribution and its implementation to the radiation module of the middle and upper atmosphere model

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

To provide the more accurate simulation of stationary planetary waves and atmospheric tides using the middle and upper atmosphere model (MUAM), the three-dimensional (longitude-latitude-height) semi-empirical climate model of water vapor distribution in the troposphere was developed which takes into account seasonal variations. The modules of radiation heating and cooling in the MUAM model were modified taking into account the dependence of water vapor concentration on longitude. The simulations performed using the modified version of MUAM revealed that the consideration of water vapor concentration variability along the circle of latitude leads to the substantial dependence of solar heating on longitude that affects the amplitudes of stationary planetary waves in the stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Dikii, A Theory of Earth Atmosphere Oscillations (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  2. A. I. Pogoreltsev, “Generation of Normal Atmospheric Modes by Stratospheric Vacillations,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 43 (2007) [Izv., Atmos. Oceanic Phys., No. 4, 43 (2007)].

    Google Scholar 

  3. A. I. Pogoreltsev, E. V. Suvorova, I. N. Fedulina, and E. Hanna, “Three-dimensional Climate Model of Ozone Distribution in the Middle Atmosphere,” Uchenye Zapiski RGGMU, No. 10 (2009) [in Russian].

  4. E. V. Suvorova and A. I. Pogoreltsev, “Modeling of Nonmigrating Tides in the Middle Atmosphere,” Geomagnetizm i Aeronomiya, No. 1, 51 (2011) [Geomagnetism and Aeronomy, No. 1, 51 (2011)].

    Google Scholar 

  5. S. Chapman and R. S. Lindzen, Atmospheric Tides: Thermal and Gravitational (Gordon and Breach, New York, 1970).

    Google Scholar 

  6. M.-D. Chou, W. Ridgway, and M.-H. Yan, “One-parameter Scaling and Exponential-sum Fitting for Water Vapor and CO2 Infrared Transmission Functions,” J. Atmos. Sci., 50 (1993).

    Google Scholar 

  7. K. Frohlich, A. Pogoreltsev, and Ch. Jacobi, “Numerical Simulation of Tides, Rossby and Kelvin Waves with the COMMA-LIM Model,” Adv. Space Res., No. 5, 32 (2003).

    Google Scholar 

  8. C. Giannitsis and R. S. Lindzen, “Nonlinear Saturation of Vertically Propagating Rossby Waves,” J. Atmos. Sci., 66 (2009).

    Google Scholar 

  9. J. N. Howard, D. L. Burch, and D. Williams, “Near-infrared Transmission through Synthetic Atmosphere,” J. Opt. Soc. Amer., 46 (1955).

    Google Scholar 

  10. D. Jacqmin and R. S. Lindzen, “The Causation and Sensitivity of the Northern Winter Planetary Waves,” J. Atmos. Sci., 42 (1985).

    Google Scholar 

  11. E. Kalnay et al., “The NCEP/NCAR Reanalysis Project,” Bull. Amer. Meteorol. Soc., 77 (1996).

    Google Scholar 

  12. R. Kistler et al., “The NCEP-NCAR 50-year Reanalysis: Monthly Means CD-rom and Documentation,” Bull. Amer. Meteorol. Soc., No. 2, 82 (2001).

    Google Scholar 

  13. R. S. Lindzen, “Atmospheric Tides,” Ann. Rev. Earth Planet. Sci., 7 (1979).

    Google Scholar 

  14. R. S. Lindzen, T. Aso, and D. Jacqmin, “Linearized Calculations of Stationary Waves in the Atmosphere,” J. Meteorol. Soc. Japan, 60 (1982).

    Google Scholar 

  15. K. N. Liou, Radiation and Cloud Processes in the Atmosphere. Theory, Observation, and Modeling (Oxford Univ. Press, New York, 1992).

    Google Scholar 

  16. K. N. Liou and T. Sasamori, “On the Transfer of Solar Radiation in Aerosol Atmospheres,” J. Atmos. Sci., 32 (1975).

    Google Scholar 

  17. A. I. Pogoreltsev, E. N. Savenkova, O. G. Aniskina, et al., “Interannual and Intraseasonal Variability of Stratospheric Dynamics and Stratosphere-troposphere Coupling during Northern Winter,” J. Atmos. Solar-Terr. Phys., Part B, 136 (2015).

    Google Scholar 

  18. A. I. Pogoreltsev, A. A. Vlasov, K. Frohlich, and Ch. Jacobi, “Planetary Waves in Coupling the Lower and Upper Atmosphere,” J. Atmos. Solar-Terr. Phys., 69 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Ermakova.

Additional information

Original Russian Text © T.S. Ermakova, I.A. Statnaya, I.N. Fedulina, E.V. Suvorova, A.I. Pogoreltsev, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 9, pp. 75–82.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, T.S., Statnaya, I.A., Fedulina, I.N. et al. Three-dimensional semi-empirical climate model of water vapor distribution and its implementation to the radiation module of the middle and upper atmosphere model. Russ. Meteorol. Hydrol. 42, 594–600 (2017). https://doi.org/10.3103/S1068373917090060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373917090060

Keywords

Navigation