Skip to main content
Log in

SL-AV atmospheric model version using σ-p hybrid vertical coordinates

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The SL-AV atmospheric model version using hybrid vertical coordinates combies the advantages of sigma and isobaric coordinates. The formulation and discretization of model equations maintain the equivalency of the new model version to the basic sigma version in the special case, when hybrid coordinates coincide with sigma coordinates. The SL-AV model version with hybrid vertical coordinate is verified with medium-range weather forecasts. The decrease in the errors of predicted geopotential height and wind as compared to the sigma model version is demonstrated. The use of hybrid coordinates also leads to a certain increase in forecast skill scores for some meteorological parameters characterizing aviation significant weather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Volodin and V. N. Lykosov, “Parameterization of Heat and Moisture Transfer in the Soil-Vegeiaiion System for Use in Atmospheric General Circulation Models: 1. Formulation and Simulations Based on Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

    Google Scholar 

  2. A. R. Ivanova, “Method of Calcuiating Map of Maximum Wind,” Meteorol. Gidrol., No. 4 (1989) [Sov. Meteorol. Hydrol, No. 4 (1989)].

  3. Meteorological Service for International Air Navigation. Annex 3 to the Convention on International Civil Aviation, 18th ed. (2013) [Transl. from English].

  4. E. N. Skriptunova and N. P. Shakina, “An Automated Procedure for Forecasting Zones of Convective Activity,” Meteorol. Gidrol., No. 5 (1991) [Sov. Meteorol. Hydrol., No. 5 (1991)].

  5. M. A. Tolstykh, Global Semi-Lagrangian Numerical Weather Prediction Model (OAO FOP, Moscow, Obninsk, 2010) [in Russian].

    Google Scholar 

  6. M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, et al., “Development of the Multiscale Version of the SL-AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

  7. N. P. Shakina and V. V. Borisova, “Experience of Using Potential Vorticity to Calculate the Height of the Tropopause,” Meteorol. Gidrol., No. 9 (1992) [Russ. Meteorol. Hydrol., No. 9 (1992)].

  8. J. Dennis, J. Edwards, K. Evans, et al., “CAM-SE: A Scalable Spectral Element Dynamical Core for the Community Atmospheric Model,” Int. J. High Performance Computing Applications, 26 (2012).

    Google Scholar 

  9. J. R. Holton, Introduction to Dynamic Meteorology, 4th ed. (Elsevier, 2004).

    Google Scholar 

  10. M. Hortal, “The Development and Testing of a New Two-time-level Semi-Lagrangian Scheme (SETTLS) in the ECMWF Forecast Model,” Quart. J. Roy. Meteorol. Soc., 128 (2002).

    Google Scholar 

  11. A. McDonald and J. Haugen, “A Two-time-level, Three-dimensional, Semi-Lagrangian, Semi-implicit, Limited Area Grid-point Model of Primitive Equations. Part II: Extension to Hybrid Vertical Coordinates,” Mon. Wea. Rev., 121 (1993).

    Google Scholar 

  12. H. Ritchie, C. Temperton, A. Simmons, et al., “Implementation of the Semi-Lagrangian Method in a High Resolution Version of the ECMWF Forecast Model,” Mon. Wea. Rev., 123 (1995).

    Google Scholar 

  13. A. Robert, “A Semi-Lagrangian and Semi-implicit Numerical Integration Scheme for the Primitive Meteorological Equations,” J. Meteorol. Soc. Japan, Ser. II, No. 1, 60 (1982).

    Google Scholar 

  14. V. Shashkin, R. Fadeev, and M. Tolstykh, “3D Conservative Cascade Semi-Lagrangian Transport Scheme Using Reduced Latitude-longitude Grid (CCS-RG),” J. Comput. Phys., 305 (2016).

    Google Scholar 

  15. V. Shashkin and M. Tolstykh, “Inherently Mass-conservative Version of the Semi-Lagrangian Absolute Vorticity (SL-AV) Atmospheric Model Dynamical Core,” Geosci. Model. Dev., 7 (2014).

    Google Scholar 

  16. A. J. Simmons and D. M. Burridge, “An Energy and Angular Momentum Conserving Vertical Finite-difference Scheme and Hybrid Vertical Coordinate,” Mon. Wea. Rev., 109 (1981).

    Google Scholar 

  17. M. Tolstykh, “Vorticity-divergence Semi-Lagrangian Shallow Water Model on the Sphere Based on Compact Finite Differences,” J. Comput. Phys., 179 (2002).

    Google Scholar 

  18. M. Tolstykh and V. Shashkin, “Vorticity-divergence Mass-conserving Semi-Lagrangian Shaliow-water Model Using the Reduced Grid on the Sphere,” J. Comput. Phys., 231 (2012).

    Google Scholar 

  19. D. Wilks, Statistical Methods in the Atmospheric Sciences, 3rd ed. (Academic Press, 2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shashkin.

Additional information

Original Russian Text © V.V. Shashkin, M.A. Tolstykh, A.R. Ivanova, E.N. Skriptunova, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 9, pp. 24–35.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashkin, V.V., Tolstykh, M.A., Ivanova, A.R. et al. SL-AV atmospheric model version using σ-p hybrid vertical coordinates. Russ. Meteorol. Hydrol. 42, 554–563 (2017). https://doi.org/10.3103/S1068373917090023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373917090023

Keywords

Navigation