Skip to main content

Can a quantum computer be applied for numerical weather prediction?


The paper considers fundamental limitations that impede the growth of performance of supercomputers based on silicon transistors and do not allow satisfying the needs of developing numerical weather and climate prediction models. A brief review of studies dealing with the development of quantum computing algorithms and with the creation of real quantum computers is provided. The shift from pure science to engineering solutions is observed. The leaders of the computer industry set the goal of creating a general-purpose quantum computer in the next few years. It is proved that the applicability of quantum computations and quantum computers for solving the problems of numerical weather and climate prediction should be preliminarily studied and assessed.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. I. Bedritskii, R. M. Vil’fand, D. B. Kiktev, and G. S. Rivin, “Roshydromet Supercomputer Technologies for Numerical Weather Prediction,” Meteorol. Gidrol., No. 7 (2017) [Russ. Meteorol. Hydrol., No. 7, 42 (2017)].

  2. 2.

    E. M. Volodin, V. Ya. Galin, A. S. Gritsun, et al., Mathematical Modeling of the Earth System, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian].

  3. 3.

    L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nonrelativistic Theory), 3rd ed., Vol. III: Theoretical Physics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  4. 4.

    Yu. I. Manin, The Computable and the Noncomputable (Sovetskoe Radio, Moscow, 1980) [in Russian].

    Google Scholar 

  5. 5.

    G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, et al., “The COSMO-Ru System of Nonhydrostatic Mesoscale Short-range Weather Forecasting of the Hydrometcenter of Russia: The Second Stage of Implementation and Development,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

    Google Scholar 

  6. 6.

    I. A. Rozinkina, E. D. Astakhova, T. Ya. Ponomareva, et al., “A Technology of the Operational Production of Global Weather Forecasts for 1-10 days Based on the T169L31 Model (with a 60-70 km Resolution) Using the New Supercomputer System of WMC Moscow,” Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

  7. 7.

    Website of ECMWF with Skill Scores of Forecasts of Leading Meteorological Centers,

  8. 8.

    Website of COSMO Consortium,

  9. 9.

    Website of the WMO Working Group on Numerical Experimentation with the Table of Plans at NWP Centers with Global Forecasting Systems,

  10. 10.

    Website of Supercomputer Ranking,

  11. 11.

    A Page of the IBM Website Dealing with Quantum Computing,

  12. 12.

    M. A. Tolstykh, Global Semi-Lagrangian Numerical Weather Prediction Model (OAO FOP, Moscow, Obninsk, 2010) [in Russian].

    Google Scholar 

  13. 13.

    M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, et al., “Development of the Multiscale Version of the SL-AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

  14. 14.

    M. A. Tolstykh and A. V. Frolov, “Some Current Problems in Numerical Weather Prediction,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 41 (2005) [Izv., Atmos. Oceanic Phys., No. 3, 41 (2005)].

    Google Scholar 

  15. 15.

    A. V. Frolov, “Medium-term Hydrodynamic Weather Forecast with a Spectral Atmospheric Model,” Meteorol. Gidrol., No. 11 (1994) [Russ. Meteorol. Hydrol., No. 11 (1994)].

  16. 16.

    A. V. Frolov, E. D. Astakhova, I. A. Rozinkina, et al., “Practical Predictability of Meteorological Variables with the Global Spectral Model at the Hydrometeorological Center of Russia,” Meteorol. Gidrol., No. 5 (2004) [Russ. Meteorol. Hydrol., No. 5 (2004)].

  17. 17.

    A. V. Frolov and V. I. Tsvetkov, “Uniform Approximation of Geophysical Fields on a Sphere by Trigonometric Polynomials,” Dokl. Akad. Nauk, No. 4, 408 (2006) [Dokl. Earth Sci., No. 4, 408 (2006)].

    Google Scholar 

  18. 18.

    A. V. Frolov and V. I. Tsvetkov, “On Expansion of Analytical Functions in Ultraspherical Polynomials on the Sphere,” Meteorol. Gidrol., No. 9 (2009) [Russ. Meteorol. Hydrol., No. 9, 34 (2009)].

    Google Scholar 

  19. 19.

    A. Arakawa and C.-M. Wu, “A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I,” J. Atmos. Sci., 70 (2013).

    Google Scholar 

  20. 20.

    M. Baldauf, A. Seifert, J. Forstner, et al., “Operational Convective-scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities,” Mon. Wea. Rev., 139 (2011).

    Google Scholar 

  21. 21.

    P. Bauer, A. Thorpe and G. Brunet, “The Quiet Revolution of Numerical Weather Prediction,” Nature, 525 (2015).

    Google Scholar 

  22. 22.

    C. H. Bennett, “Time/Space Trade-offs for Reversftle Computation,” SIAM J. Computing, No. 4, 18 (1989).

    Google Scholar 

  23. 23.

    H. Bernien, S. Schwartz, A. Keesling, et al., Probing Many-body Dynamics on a 51-atom Quantum Simulator,

  24. 24.

    I. A. Boutle, J. E. Eyre, and A. P. Lock, “Seamless Stratocumulus Simulation across the Turbulent Gray Zone,” Mon. Wea. Rev., 142 (2014).

    Google Scholar 

  25. 25.

    D. Castelvecchi, “Quantum Computers Ready to Leap out of the Lab,” Nature, 541 (2017).

    Google Scholar 

  26. 26.

    A. Childs and W. van Dam, “Quantum Algorithms for Algebraic Problems,” Rev. Mod. Phys., 82 (2010).

    Google Scholar 

  27. 27.

    D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. Roy. Soc. London, Ser. A, 400 (1985).

    Google Scholar 

  28. 28.

    J. Dudhia, “A History of Mesoscale Model Development,” Asia-Pacific J. Atmos. Sci., No. 1, 50 (2014).

    Google Scholar 

  29. 29.

    R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys., No. 6/7, 21 (1982).

    Google Scholar 

  30. 30.

    M. Hawkins, “Complex Supercomputer Upgrade Completed,” ECMWF Newsletter, No. 151 (2017).

    Google Scholar 

  31. 31.

    S. Y. Hong and J. Dudhia, “Next-generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies,” Bull. Amer. Meteorol. Soc., 93 (2012).

    Google Scholar 

  32. 32.

    R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. Dev., 5 (1961).

    Google Scholar 

  33. 33.

    MetOffice Science Strategy: 2016-2021. Delivering Science with Impact (MetOffice, 2015),

  34. 34.

    A. Montanaro, “Quantum Algorithms: An Overview,” npj Quantum Information, 2 (2016).

    Google Scholar 

  35. 35.

    National Centers for Environmental Prediction Strategic Plan 2015-2019. Version 4, February 27 (NCEP, 2015),

  36. 36.

    Numerical Techniques for Global Atmospheric Models, Ed. by P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, Lecture Notes in Computational Science and Engineering, 80 (2011).

  37. 37.

    Seam less Prediction of the Earth System: From Minutes to Months, Ed. by G. Brunet, S. Jones, and P. Ruti, WMO, No. 1156 (WMO, 2015).

  38. 38.

    H. H. Shin and S.-Y. Hong, “Analysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-zone Resolutions,” J. Atmos. Sci., 70 (2013).

    Google Scholar 

  39. 39.

    P. W. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM J. Computing, No. 5, 26 (1997).

    Google Scholar 

  40. 40.

    A. J. Simmons and A. Hollingsworth, “Some Aspects of the Improvement in Skill of Numerical Weather Prediction,” Quart. J. Roy. Meteorol. Soc., 128 (2002).

    Google Scholar 

  41. 41.

    J. Smith and M. Mosca, “Algorithms for Quantum Computers,” in Handbook of Natural Computing (Springer, Berlin, 2012).

    Google Scholar 

  42. 42.

    A. Trabesinger, “Quantum Computing: Towards Reality,” Nature Outline, 543 (2017).

    Google Scholar 

  43. 43.

    M. Tygert, “Fast Algorithms for Spherical Harmonic Expansions, III,” J. Comput. Phys., 229 (2010).

    Google Scholar 

  44. 44.

    D. Walters, I. Boutle, M. Brooks, et al., “The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 Configurations,” Geosci. Model Dev., 10 (2017).

    Google Scholar 

  45. 45.

    N. Wedi, M. Hamrud, and G. Mozdzynski, “A Fast Spherical Harmonics Transform for Global NWP and Climate Models,” Mon. Wea. Rev., 141 (2013).

    Google Scholar 

  46. 46.

    D. L. Williamson, “The Evolution of Dynamical Cores for Global Atmospheric Models,” J. Meteorol. Soc. Japan, 85 (2007).

  47. 47.

    G. Zangl, D. Reinert, P. Tripods, and M. Baldauf, “The ICON (ICOsahedral Non-hydrostatic) Modelling Framework of DWD and MPI-M: Description of the Nonhydrostatic Dynamical Core,” Quart. J. Roy. Meteorol. Soc., 141 (2015).

Download references

Author information



Corresponding author

Correspondence to A. V. Frolov.

Additional information

Original Russian Text © A.V. Frolov, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 9, pp. 12–23.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.V. Can a quantum computer be applied for numerical weather prediction?. Russ. Meteorol. Hydrol. 42, 545–553 (2017).

Download citation


  • Numerical weather prediction
  • seamless technologies
  • supercomputer
  • parallel computing
  • quantum algorithms
  • quantum computer