Russian Meteorology and Hydrology

, Volume 42, Issue 9, pp 545–553 | Cite as

Can a quantum computer be applied for numerical weather prediction?

  • A. V. FrolovEmail author


The paper considers fundamental limitations that impede the growth of performance of supercomputers based on silicon transistors and do not allow satisfying the needs of developing numerical weather and climate prediction models. A brief review of studies dealing with the development of quantum computing algorithms and with the creation of real quantum computers is provided. The shift from pure science to engineering solutions is observed. The leaders of the computer industry set the goal of creating a general-purpose quantum computer in the next few years. It is proved that the applicability of quantum computations and quantum computers for solving the problems of numerical weather and climate prediction should be preliminarily studied and assessed.


Numerical weather prediction seamless technologies supercomputer parallel computing quantum algorithms quantum computer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Bedritskii, R. M. Vil’fand, D. B. Kiktev, and G. S. Rivin, “Roshydromet Supercomputer Technologies for Numerical Weather Prediction,” Meteorol. Gidrol., No. 7 (2017) [Russ. Meteorol. Hydrol., No. 7, 42 (2017)].Google Scholar
  2. 2.
    E. M. Volodin, V. Ya. Galin, A. S. Gritsun, et al., Mathematical Modeling of the Earth System, Ed. by N. G. Yakovlev (MAKS Press, Moscow, 2016) [in Russian].Google Scholar
  3. 3.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nonrelativistic Theory), 3rd ed., Vol. III: Theoretical Physics (Nauka, Moscow, 1974) [in Russian].Google Scholar
  4. 4.
    Yu. I. Manin, The Computable and the Noncomputable (Sovetskoe Radio, Moscow, 1980) [in Russian].Google Scholar
  5. 5.
    G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, et al., “The COSMO-Ru System of Nonhydrostatic Mesoscale Short-range Weather Forecasting of the Hydrometcenter of Russia: The Second Stage of Implementation and Development,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].Google Scholar
  6. 6.
    I. A. Rozinkina, E. D. Astakhova, T. Ya. Ponomareva, et al., “A Technology of the Operational Production of Global Weather Forecasts for 1-10 days Based on the T169L31 Model (with a 60-70 km Resolution) Using the New Supercomputer System of WMC Moscow,” Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].Google Scholar
  7. 7.
    Website of ECMWF with Skill Scores of Forecasts of Leading Meteorological Centers, Scholar
  8. 8.
    Website of COSMO Consortium, Scholar
  9. 9.
    Website of the WMO Working Group on Numerical Experimentation with the Table of Plans at NWP Centers with Global Forecasting Systems, Scholar
  10. 10.
    Website of Supercomputer Ranking, Scholar
  11. 11.
    A Page of the IBM Website Dealing with Quantum Computing, Scholar
  12. 12.
    M. A. Tolstykh, Global Semi-Lagrangian Numerical Weather Prediction Model (OAO FOP, Moscow, Obninsk, 2010) [in Russian].Google Scholar
  13. 13.
    M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, et al., “Development of the Multiscale Version of the SL-AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].Google Scholar
  14. 14.
    M. A. Tolstykh and A. V. Frolov, “Some Current Problems in Numerical Weather Prediction,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 41 (2005) [Izv., Atmos. Oceanic Phys., No. 3, 41 (2005)].Google Scholar
  15. 15.
    A. V. Frolov, “Medium-term Hydrodynamic Weather Forecast with a Spectral Atmospheric Model,” Meteorol. Gidrol., No. 11 (1994) [Russ. Meteorol. Hydrol., No. 11 (1994)].Google Scholar
  16. 16.
    A. V. Frolov, E. D. Astakhova, I. A. Rozinkina, et al., “Practical Predictability of Meteorological Variables with the Global Spectral Model at the Hydrometeorological Center of Russia,” Meteorol. Gidrol., No. 5 (2004) [Russ. Meteorol. Hydrol., No. 5 (2004)].Google Scholar
  17. 17.
    A. V. Frolov and V. I. Tsvetkov, “Uniform Approximation of Geophysical Fields on a Sphere by Trigonometric Polynomials,” Dokl. Akad. Nauk, No. 4, 408 (2006) [Dokl. Earth Sci., No. 4, 408 (2006)].Google Scholar
  18. 18.
    A. V. Frolov and V. I. Tsvetkov, “On Expansion of Analytical Functions in Ultraspherical Polynomials on the Sphere,” Meteorol. Gidrol., No. 9 (2009) [Russ. Meteorol. Hydrol., No. 9, 34 (2009)].Google Scholar
  19. 19.
    A. Arakawa and C.-M. Wu, “A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I,” J. Atmos. Sci., 70 (2013).Google Scholar
  20. 20.
    M. Baldauf, A. Seifert, J. Forstner, et al., “Operational Convective-scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities,” Mon. Wea. Rev., 139 (2011).Google Scholar
  21. 21.
    P. Bauer, A. Thorpe and G. Brunet, “The Quiet Revolution of Numerical Weather Prediction,” Nature, 525 (2015).Google Scholar
  22. 22.
    C. H. Bennett, “Time/Space Trade-offs for Reversftle Computation,” SIAM J. Computing, No. 4, 18 (1989).Google Scholar
  23. 23.
    H. Bernien, S. Schwartz, A. Keesling, et al., Probing Many-body Dynamics on a 51-atom Quantum Simulator, Scholar
  24. 24.
    I. A. Boutle, J. E. Eyre, and A. P. Lock, “Seamless Stratocumulus Simulation across the Turbulent Gray Zone,” Mon. Wea. Rev., 142 (2014).Google Scholar
  25. 25.
    D. Castelvecchi, “Quantum Computers Ready to Leap out of the Lab,” Nature, 541 (2017).Google Scholar
  26. 26.
    A. Childs and W. van Dam, “Quantum Algorithms for Algebraic Problems,” Rev. Mod. Phys., 82 (2010).Google Scholar
  27. 27.
    D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. Roy. Soc. London, Ser. A, 400 (1985).Google Scholar
  28. 28.
    J. Dudhia, “A History of Mesoscale Model Development,” Asia-Pacific J. Atmos. Sci., No. 1, 50 (2014).Google Scholar
  29. 29.
    R. P. Feynman, “Simulating Physics with Computers,” Int. J. Theor. Phys., No. 6/7, 21 (1982).Google Scholar
  30. 30.
    M. Hawkins, “Complex Supercomputer Upgrade Completed,” ECMWF Newsletter, No. 151 (2017).Google Scholar
  31. 31.
    S. Y. Hong and J. Dudhia, “Next-generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies,” Bull. Amer. Meteorol. Soc., 93 (2012).Google Scholar
  32. 32.
    R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. Dev., 5 (1961).Google Scholar
  33. 33.
    MetOffice Science Strategy: 2016-2021. Delivering Science with Impact (MetOffice, 2015), Scholar
  34. 34.
    A. Montanaro, “Quantum Algorithms: An Overview,” npj Quantum Information, 2 (2016).Google Scholar
  35. 35.
    National Centers for Environmental Prediction Strategic Plan 2015-2019. Version 4, February 27 (NCEP, 2015), Scholar
  36. 36.
    Numerical Techniques for Global Atmospheric Models, Ed. by P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, Lecture Notes in Computational Science and Engineering, 80 (2011).Google Scholar
  37. 37.
    Seam less Prediction of the Earth System: From Minutes to Months, Ed. by G. Brunet, S. Jones, and P. Ruti, WMO, No. 1156 (WMO, 2015).Google Scholar
  38. 38.
    H. H. Shin and S.-Y. Hong, “Analysis of Resolved and Parameterized Vertical Transports in Convective Boundary Layers at Gray-zone Resolutions,” J. Atmos. Sci., 70 (2013).Google Scholar
  39. 39.
    P. W. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM J. Computing, No. 5, 26 (1997).Google Scholar
  40. 40.
    A. J. Simmons and A. Hollingsworth, “Some Aspects of the Improvement in Skill of Numerical Weather Prediction,” Quart. J. Roy. Meteorol. Soc., 128 (2002).Google Scholar
  41. 41.
    J. Smith and M. Mosca, “Algorithms for Quantum Computers,” in Handbook of Natural Computing (Springer, Berlin, 2012).Google Scholar
  42. 42.
    A. Trabesinger, “Quantum Computing: Towards Reality,” Nature Outline, 543 (2017).Google Scholar
  43. 43.
    M. Tygert, “Fast Algorithms for Spherical Harmonic Expansions, III,” J. Comput. Phys., 229 (2010).Google Scholar
  44. 44.
    D. Walters, I. Boutle, M. Brooks, et al., “The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 Configurations,” Geosci. Model Dev., 10 (2017).Google Scholar
  45. 45.
    N. Wedi, M. Hamrud, and G. Mozdzynski, “A Fast Spherical Harmonics Transform for Global NWP and Climate Models,” Mon. Wea. Rev., 141 (2013).Google Scholar
  46. 46.
    D. L. Williamson, “The Evolution of Dynamical Cores for Global Atmospheric Models,” J. Meteorol. Soc. Japan, 85 (2007).Google Scholar
  47. 47.
    G. Zangl, D. Reinert, P. Tripods, and M. Baldauf, “The ICON (ICOsahedral Non-hydrostatic) Modelling Framework of DWD and MPI-M: Description of the Nonhydrostatic Dynamical Core,” Quart. J. Roy. Meteorol. Soc., 141 (2015).Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Federal Service for Hydrometeorology and Environmental MonitoringMoscowRussia

Personalised recommendations