Advertisement

Russian Meteorology and Hydrology

, Volume 42, Issue 8, pp 494–502 | Cite as

Investigations of the development of thunderstorm with hail. Part 3. Numerical simulation of cloud evolution

  • A. A. Sin’kevich
  • Yu. A. Dovgalyuk
  • N. E. Veremei
  • A. B. Kurov
  • Yu. P. Mikhailovskii
  • E. V. Bogdanov
  • M. L. Toropova
  • A. A. Ignat’ev
  • A. Kh. Adzhiev
  • A. M. Malkarova
  • A. M. Abshaev
  • V. Gopalakrishnan
  • P. Murugavel
  • S. D. Pawarr
Article

Abstract

The three-dimensional nonstationary model of a convective cloud is used for investigating a thunderstorm with hail which developed over Pyatigorsk on May 29, 2012 and produced a severe hailstorm. The values of cloud characteristics (liquid water content, ice content, vertical velocity, etc.) are obtained. The importance ofconsidering wind shear is noted. The simulation results are used to analyze the transformation of precipitation field and the electric charge structure of the analyzed cloud during its development.

Keywords

Thunderstorm with hail cloud evolution numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Ashabokov, L. M. Fedchenko, V. O. Tapaskhanov, et al., Physics of Hail Clouds and Their Modification: Current State and Development Trends (Pechatnyi Dvor, Nalchik, 2013) [in Russian].Google Scholar
  2. 2.
    N. E. Veremei, Yu. A. Dovgalyuk, and V. N. Morozov, “Parameterization of Microphysical Processes in Numerical Models of Thunderstorm Clouds,” Meteorol. Gidrol., No. 11 (2006) [Russ. Meteorol. Hydrol., No. 11, 31 (2006)]Google Scholar
  3. 3.
    V. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, et al., The Practice of the “Lomonosov” Supercomputer. Open Systems (Izdatel’skii Dom “Otkrytye Sistemy”, Moscow, 2012) [in Russian].Google Scholar
  4. 4.
    Yu. A. Dovgalyuk, N. E. Veremei, S. A. Vladimirov, et al., “Conception of the Development of the Three-Dimensional Model of a Precipitating Convective Cloud. Part I: Model Structure and Basic Equations of the Hydrothermodynamic Block,” Trudy GGO, No. 558 (2008) [in Russian].Google Scholar
  5. 5.
    Yu. A. Dovgalyuk, N. E. Veremei, S. A. Vladimirov, et al., “Conception of the Development of the Three-Dimensional Model of a Precipitating Convective Cloud. Part II: The Microphysical Block of the Model,” Trudy GGO, No. 562 (2010) [in Russian].Google Scholar
  6. 6.
    Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sin’kevich, The Use of One-and-Half-Dimensional Model for Solving Fundamental and Applied Problems of the Cloud Physics, 2nd ed. (Mobi Dik, St. Petersburg, 2013) [in Russian].Google Scholar
  7. 7.
    I. P. Mazin and S. M. Shmeter, Clouds: Structure and Formation Physics (Gidrometeoizdat, Leningrad, 1983) [in Rus sian].Google Scholar
  8. 8.
    Yu. P. Mikhailovskii, A. A. Sin’kevich, S. D. Pawar, et al., “Investigations of the Development of Thunderstorm with Hail. Part 2. Analysis of Methods for the Forecast and Diagnosis of the Electrical Properties of Clouds,” Meteorol. Gidrol., No. 6 (2017) [Russ. Meteorol. Hydrol., No. 6, 42 (2017)]Google Scholar
  9. 9.
    R. S. Pastushkov, “The Effect of Vertical Wind Shear on the Convective Cloud Development,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 9 (1973) [in Russian].Google Scholar
  10. 10.
    R. S. Pastushkov, “Development of Cumulus Clouds in the Atmosphere with Vertical Wind Shear,” Meteorol. Gidrol., No. 4 (1969) [in Russian].Google Scholar
  11. 11.
    R. S. Pastushkov, “Numerical Simulation of the Convective Cloud Interaction with the Ambient Atmosphere,” Trudy TsAO, No. 108 (1972) [in Russian].Google Scholar
  12. 12.
    R. S. Pastushkov and S. M. Shmeter, “The Effects of Vertical Wind Profile on the Development of High-depth Cumulonimbus Clouds,” in Proceedings of VAll-Union Meteorological Congress (Gidrometeoizdat, Leningrad, 1971) [in Russian].Google Scholar
  13. 13.
    A. A. Sin’kevich, Yu. P. Mikhailovskii, Yu. A. Dovgalyuk, et al., “Investigations of the Development of Thunderstorm with Hail. Part 1. Cloud Development and Formation of Electric Discharges,” Meteorol. Gidrol., No. 9 (2016) [Russ. Meteorol. Hydrol., No. 9, 41 (2016)]Google Scholar
  14. 14.
    S. M. Shmeter, Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1972) [in Russian].Google Scholar
  15. 15.
    T. Asai, “Cumulus Convection in the Atmosphere with Vertical Wind Shear,” J. Meteorol. Soc. Japan, No. 4, 42 (1964).Google Scholar
  16. 16.
    R. S. Pastushkov, “The Effect of Vertical Wind Shear on the Evolution of Convective Clouds,” Quart. J. Roy. Meteorol. Soc., 101 (1975).Google Scholar
  17. 17.
    T. Takeda, “Effect of the Prevailing Wind with Vertical Shear on the Convective Flow Accompanied with Heavy Rainfall,” J. Meteorol. Soc. Japan, No. 2, 44 (1966).Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Sin’kevich
    • 1
  • Yu. A. Dovgalyuk
    • 1
  • N. E. Veremei
    • 1
  • A. B. Kurov
    • 1
  • Yu. P. Mikhailovskii
    • 1
  • E. V. Bogdanov
    • 1
  • M. L. Toropova
    • 1
  • A. A. Ignat’ev
    • 1
  • A. Kh. Adzhiev
    • 2
  • A. M. Malkarova
    • 3
  • A. M. Abshaev
    • 2
  • V. Gopalakrishnan
    • 4
  • P. Murugavel
    • 4
  • S. D. Pawarr
    • 4
  1. 1.Voeikov Main Geophysical ObservatorySt. PetersburgRussia
  2. 2.High-Mountain Geophysical InstituteNalchikRussia
  3. 3.Federal Service for Hydrometeorology and Environmental MonitoringMoscowRussia
  4. 4.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations