Skip to main content
Log in

Roshydromet supercomputer technologies for numerical weather prediction

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The main stages are considered of the process of Roshydromet forecast technologies modernization that started in the 1990s, especially those related to the use of supercomputers for operational numerical weather prediction (NWP) and to the development of supercomputer technologies for NWP with different lead times. Some outcomes of the modernization are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Yu. Alferov, E. D. Astakhova, G. S. Rivin, and I. A. Rozinkina, “Development of High-resolution Ensemble Prediction System for the Region of Sochi-2014 Winter Olympics,” Trudy Gidromettsentra Rossii, No. 352 (2014) [in Russian].

    Google Scholar 

  2. V. A. Antsypovich and S. V. Lubov, “Modernization of the Roshydromet Operational Hydrometeorological Information Processing Centers,” Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

    Google Scholar 

  3. E. D. Astakhova, “Ensemble Medium-range Weather Prediction: The Technology Implementation on a Modern Computer Base,” Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

    Google Scholar 

  4. E. D. Astakhova, A. Yu. Bundel’, A. N. Bagrov, et al., “The System of Ensemble Global Prediction of Meteorological Fields with the Lead Time up to 240 Hours: The Results of Operational Testing,” in The Results of Testing New and Improved Technologies, Models and Methods of Hydrometeorological Forecasting, No. 43 (Moscow, 2016) [in Russian].

    Google Scholar 

  5. E. D. Astakhova, A. Montani, and D. Yu. Alferov, “Ensemble Forecasts for the Sochi-2014 Olympic Games,” Meteorol. Gidrol., No. 8 (2015) [Russ. Meteorol. Hydrol., No. 8, 40 (2015)].

    Google Scholar 

  6. A. I. Bedritskii, “Weather and Climate Effects on Stability and Development of Economy,” Meteorol. Gidrol., No. 10 (1997) [Russ. Meteorol. Hydrol., No. 10 (1997)].

    Google Scholar 

  7. A. I. Bedritskii, A. A. Korshunov, L. A. Khandozhko, M. Z. Shaimardanov, “Fundamentals of Optimal Adaptation of Russian Economy to Hazardous Weather and Climate Impacts,” Meteorol. Gidrol., No. 4 (2009) [Russ. Meteorol. Hydrol., No. 4, 34 (2009)].

    Google Scholar 

  8. R. M. Vil’fand, A. A. Kirsanov, A. P. Revokatova, et al., “Forecasting the Transport and Transformation of Atmospheric Pollutants with the COSMO-ART Model,” Meteorol. Gidrol., No. 5 (2017) [Russ. Meteorol. Hydrol., No. 5, 42 (2017)].

    Google Scholar 

  9. R. M. Vil’fand, G. S. Rivin, and I. A. Rozinkina, “COSMO-Ru System of Nonhydrostatic Mesoscale Short-range Weather Forecast of the Hydrometcenter of Russia: The First Stage of Realization and Development,” Meteorol. Gidrol., No. 8 (2010) [Russ. Meteorol. Hydrol., No. 8, 35 (2010)].

    Google Scholar 

  10. A. A. Zelen’ko, R. M. Vil’fand, Yu. D. Resnyanskii, et al., “An Ocean Data Assimilation System and Reanalysis of the World Ocean Hydrophysical Fields,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].

    Google Scholar 

  11. D. B. Kiktev, E. D. Astakhova, D. V. Blinov, et al., “Development of Forecasting Technologies for Meteorological Support of the Sochi-2014 Winter Olympic Games,” Meteorol. Gidrol., No. 10 (2013) [Russ. Meteorol. Hydrol., No. 10, 38 (2013)].

    Google Scholar 

  12. D. B. Kiktev, E. D. Astakhova, R. B. Zaripov, et al., “FROST-2014 Project and Meteorological Support of the Sochi-2014 Olympics,” Meteorol. Gidrol., No. 8 (2015) [Russ. Meteorol. Hydrol., No. 8, 40 (2015)].

    Google Scholar 

  13. G. B. Kurbatkin, A. I. Degtyarev, and A. V. Frolov, Spectral Model of the Atmosphere, Initialization and Database for Numerical Weather Prediction (Gidrometeoizdat, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  14. M. A. Nikitin, G. S. Rivin, I. A. Rozinkina, and M. M. Chumakov, “Identification of Polar Cyclones above the Kara Sea Waters Using Hydrodynamic Modeling,” Vesti Gazovoi Nauki, No. 2 (2015) [in Russian].

    Google Scholar 

  15. “The Decree of the Government of the Russian Federation No. 94 (08.02.2002) “The Measures on the Fulfillment of the Russian Federation Obligations on the International Hydrometeorological Observation Data Exchange and Implementation of Functions of the World Meteorological Center in Moscow,” in Legislation Bulletin of the Russian Federation, No. 28 (2003) [in Russian].

  16. G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, et al., “The COSMO-Ru Sysiem of Nonhydrostatic Mesoscale Short-range Weather Forecasting of the Hydrometcenter of Russia: The Second Stage of Implementation and Development,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

    Google Scholar 

  17. I. A. Rozinkina, E. D. Astakhova, T. Ya. Ponomareva, et al., “A Technology of the Operational Production of Global Weather Forecasts for 1-10 Days Based on the T169L31 Model (with a 60-70 km Resolution) Using the New Supercomputer System of WMC Moscow,” Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

    Google Scholar 

  18. I. A. Rozinkina, A. N. Bagrov, E. D. Astakhova, et al., “The Global Forecast of Meteorological Fields for the Period up to 10 Days Based on the T339L31 Spectral Model of the Hydrometcenter of Russia and the Results of Testing,” in The Results of Testing New and Improved Technologies, Models and Methods of Hydrometeorological Forecasting, No. 43 (Moscow, 2016) [in Russian].

    Google Scholar 

  19. M. A. Tolstykh, Global Semi-Lagrangian Numerical Weather Prediction Model (OAO FOP, Moscow, Obninsk, 2010) [in Russian].

    Google Scholar 

  20. M. A. Tolstykh, N. A. Dianskii, A. V. Gusev, and D. B. Kiktev, “Simulation of Seasonal Anomalies of Atmospheric Circulation Using Coupled Atmosphere-Ocean Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 2, 50 (2014)].

    Google Scholar 

  21. M. A. Tolstykh, J.-F. Geleyn, E. M. Volodin, et al., “Development of the Multiscale Version of the SL-AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

    Google Scholar 

  22. A. V. Frolov, “Medium-term Hydrodynamic Weather Forecast with a Spectral Atmospheric Model,” Meteorol. Gidrol., No. 11 (1994) [Russ. Meteorol. Hydrol., No. 11 (1994)].

    Google Scholar 

  23. A. V. Frolov, E. D. Astakhova, I. A. Rozinkina, et al., “Practical Predictability of Meteorological Variables with the Global Spectral Model at the Hydrometeorological Center of Russia,” Meteorol. Gidrol., No. 5 (2004) [Russ. Meteorol. Hydrol., No. 5 (2004)].

    Google Scholar 

  24. A. V. Frolov, A. I. Vazhnik, P. I. Svirenko, and V. I. Tsvetkov, Global Atmospheric Data Assimilation System (Gidrometeoizdat, St. Peiersburg, 2000) [in Russian].

    Google Scholar 

  25. M. V. Shatunova, G. S. Rivin, and I. A. Rozinkina, “Visibility Forecasting for February 16-18, 2014 for the Region of the Sochi-2014 Olympic Games Using the High-resolution COSMO-Ru1 Model,” Meteorol. Gidrol., No. 8 (2015) [Russ. Meteorol. Hydrol., No. 8, 40 (2015)].

    Google Scholar 

  26. M. Baldauf, A. Seifert, J. Forstner, et al., “Operational Convective-scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities,” Mov. Wea. Rev., 139 (2011).

    Google Scholar 

  27. G. Rivin, I. Rozinkina, E. Astakhova, et al., The COSMO Priority Project CORSO (Consolidation of Operational and Research Results for the Sochi Olympic Games). Final Report, COSMO Tech. Rep., No. 32 (2017), http://www.cosmo-model.org/content/model/documentation/techReports/default.htm.

    Google Scholar 

  28. G. Zangl, D. Reinert, P. Ripodas, and M. Baldauf, “The ICON (ICOsahedral Non-hydrostatic) Modelling Framework of DWD and MPI-M: Description of the Nonhydrostatic Dynamical Core,” Quart. J. Roy. Meteorol. Soc., 141 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Rivin.

Additional information

Original Russian Text © A.I. Bedritskii, R.M. Vil’fand, D.B. Kiktev, G.S. Rivin, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 7, pp. 10–23.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedritskii, A.I., Vil’fand, R.M., Kiktev, D.B. et al. Roshydromet supercomputer technologies for numerical weather prediction. Russ. Meteorol. Hydrol. 42, 425–434 (2017). https://doi.org/10.3103/S1068373917070019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373917070019

Keywords

Navigation