Skip to main content
Log in

Forecasting mesoscale convective systems in the Urals using the WRF model and remote sensing data

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The results are presented ofmodeling the formation and evolution ofmesoscale convective systems (MCS) accompanied by severe weather events over the territory of the Western Urals by the WRF-ARW numerical model of the atmosphere. Twenty-three cases of mesoscale convective complexes and mesoscale squall lines are considered for 2002-2015. The Terra/Aqua MODIS data, the data of weather radars installed in Perm and Izhevsk, and the data from the Roshydromet observation network were used to verify the model forecasts. It is demonstrated that the parameters of MCS intensity are simulated by the model with high reliability; however, the quality of the forecast of the spatial position of MCS is unsatisfactory in most cases. It is revealed that the model grid spacing strongly affects the forecast skill scores. In some cases the model successfully simulates the formation and evolution of MCS accompanied by severe weather events and can be used for their short-range forecast with the time accuracy of ±(1-2) hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Abdullaev, A. A. Zhelnin, and O. Yu. Lenskaya, “Life Cycle of Mesoscale Convective Systems,” Meteorol. Gidrol., No. 5 (2009) [Russ. Meteorol. Hydrol., No. 5, 34 (2009)].

  2. S. M. Abdullaev, A. A. Zhelnin, and O. Yu. Lenskaya, “The Structure of Mesoscale Convective Systems in Central Russia,” Meteorol. Gidrol., No. 1 (2012) [Russ. Meteorol. Hydrol., No. 1, 37 (2012)].

  3. A. O. Agurenko, A. M. Kolesov, A. A. Korshunov, et al., “Estimation of Economic Value of Satellite Data for Predicting Convective Events during the Warm Season,” Meteorol. Gidrol., No. 5 (2014) [Russ. Meteorol. Hydrol., No. 5, 39 (2014)].

  4. A. A. Alekseeva and V. M. Losev, “Forecasting Heavy Precipitation in Summer Based on the Outputs of the Regional Model of the Hydrometcenter of Russia,” Trudy Gidromettsentra Rossii, No. 351 (2014) [in Russian].

  5. L. V. Berkovich and Yu. V. Tkacheva, “Skill Scores of Heavy Precipitation Forecasts in Krasnodar and Stavropol Krais in the Summer of 2013 by the WRF-ARW Model,” Trudy Gidromettsentra Rossii, No. 351 (2014) [in Russian].

  6. A. A. Vasil’ev, Recommendations on Forecasting Adverse and Severe Weather Events Related to the Zones of Active Convection (Hydrometcenter ofRussia, Moscow, 1999) [in Russian].

    Google Scholar 

  7. N. F. Vel’tishchev and V. D. Zhupanov, “Experiments on Numerical Modeling of Intense Convection,” Meteorol. Gidrol., No. 9 (2008) [Russ. Meteorol. Hydrol., No. 9, 33 (2008)].

  8. N. F. Vel’tishchev, V. D. Zhupanov, and Yu. B. Pavlyukov, “Short-range Forecast of Heavy Precipitation and Strong Wind Using the Convection-allowing WRF Models,” Meteorol. Gidrol., No. 1 (2011) [Russ. Meteorol. Hydrol., No. 1, 36 (2011)].

  9. N. F. Vel’tishchev and V. M. Stepanenko, Mesoscale Meteorological Processes (MGU, Moscow, 2006) [in Russian].

    Google Scholar 

  10. R. M. Vil’fand, G. S. Rivin, and I. A. Rozinkina, “Mesoscale Short-term Weather Forecast in the Hydrometeorological Center of Russia Using COSMO-RU,” Meteorol. Gidrol., No. 1 (2010) [Russ. Meteorol. Hydrol., No. 8, 35 (2010)].

  11. R. M. Vil’fand, G. S. Rivin, and I. A. Rozinkina, “COSMO-RU System of Nonhydrostatic Mesoscale Short-range Weather Forecast of the Hydrometcenter of Russia: the First Stage of Realization and Development,” Meteorol. Gidrol., No. 8 (2010) [Russ. Meteorol. Hydrol., No. 8, 35 (2010)].

  12. L. V. Gonchukov and B. E. Lamash, “Numerical Prediction of Severe Weather Events in the North of the Primorsky Krai,” Vestnik Dal’nevostochnogo Otdeleniya RAN, No. 6 (2010) [in Russian].

  13. V. P. Gorbatenko, S. Yu. Krechetova, M. Yu. Belikova, and O. E. Nechepurenko, “The Comparison of Atmospheric Instability Indices Retrieved from the Data of Radio Sounding and MODIS Spectroradiometer on Thunderstorm Days over West Siberia,” Meteorol. Gidrol., No. 5 (2015) [Russ. Meteorol. Hydrol., No. 5, 40 (2015)].

  14. I. M. Gubenko and K. G. Rubinshtein, “Analysis of Results of Thunderstorm Forecasting Based on Atmospheric Instability Indices Using the WRF-ARW Numerical Model Data,” Meteorol. Gidrol., No. 1 (2015) [Russ. Meteorol. Hydrol., No. 1, 40 (2015)].

  15. T. G. Dmitrieva, M. V. Bukharov, and B. E. Peskov, “Analysis of Formation Conditions of Severe Squalls Based on the Satellite and Prognostic Data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 3, 8 (2011) [in Russian].

    Google Scholar 

  16. N. A. Kalinin, Dynamic Meteorology (Permskoe Knizhnoe Izdatel’stvo, Perm, 2009) [in Russian].

    Google Scholar 

  17. N. A. Kalinin, Monitoring, Modeling, and Forecasting Atmospheric Conditions in Midlatitudes (Perm State Univ., Perm, 2015) [in Russian].

    Google Scholar 

  18. N. A. Kalinin, A. L. Vetrov, E. M. Sviyazov, and E. V. Popova, “Studying Intensive Convection in Perm Krai Using the WRF Model,” Meteorol. Gidrol., No. 9 (2013) [Russ. Meteorol. Hydrol., No. 9, 38 (2013)].

  19. N. A. Kalinin and A. A. Smirnova, “Investigation of Radar Characteristic of Recognition of Dangerous Weather Phenomena Caused by Cumulonimbus Clouds,” Meteorol. Gidrol., No. 1 (2015) [Russ. Meteorol. Hydrol., No. 1, 40 (2015)].

  20. N. A. Kalinin and A. A. Smirnova, “Determination of Liquid Water Content and Reserve of Cumulonimbus Cloudiness from Meteorological Radar Information,” Meteorol. Gidrol., No. 2 (2011) [Russ. Meteorol. Hydrol., No. 2, 36 (2011)].

  21. Zh. Lkhamzhavyn, Ts. Manalzhavyn, and V. K. Arguchintsev, “Studying the Convection Using the Kain-Fritsch Numerical Model,” Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya: Nauki o Zemle, No. 1, 5 (2012) [in Russian].

    Google Scholar 

  22. Yu. V. Martynova, R. B. Zaripov, V. N. Krupchatnikov, and A. P. Petrov, “Estimation of the Quality of Atmospheric Dynamics Forecasting in the Siberian Region Using the WRF-ARW Mesoscale Model,” Meteorol. Gidrol., No. 7 (2014) [Russ. Meteorol. Hydrol., No. 7, 39 (2014)].

  23. M. A. Novitskii, B. Ya. Shmerlin, S. A. Petrichenko, et al., “Using the Indices of Convective Instability and Meteorological Parameters for Analyzing the Tornado-risk Conditions in Obninsk on May 23, 2013,” Meteorol. Gidrol., No. 2 (2015) [Russ. Meteorol. Hydrol., No. 2, 40 (2015)].

  24. B. E. Peskov and T. G. Dmitrieva, “Specifying the Mesoscale Numerical Forecast of Heavy Showers,” Meteorol. Gidrol., No. 9 (2010) [Russ. Meteorol. Hydrol., No. 9, 35 (2010)].

  25. G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, et al., “COSMO-Ru System for Nonhydrostatic Mesoscale Short-range Weather Forecasting of Hydrometcenter of Russia: The Second Stage of Realization and Development,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].

  26. P. A. Toropov and A. A. Shestakova, “Quality Assessment of Novorossiysk Bora Simulation by the WRF-ARW Model,” Meteorol. Gidrol., No. 7 (2014) [Russ. Meteorol. Hydrol., No. 7, 39 (2014)].

  27. Yu. Ya. Chernogubova, “Convective Severe Weather Events in the Central Chernozem Region and Their Forecasting,” Trudy Gidromettsentra Rossii, No. 357 (2015) [in Russian].

  28. A. N. Shikhov, “Estimation of Forest Damage from Natural Disasters in the Perm Region Using the Long-term Series of Space Imagery,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 11 (2014) [in Russian].

    Google Scholar 

  29. A. N. Shikhov and A. V. Bykov, “The Study of Two Cases of Severe Tornados in the Cis-Ural Region,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 3, 12 (2015) [in Russian].

    Google Scholar 

  30. E. A. Aligo and W. A. Gallus, “On the Impact of WRF Model Vertical Grid Resoiuiion on Midwest Summer Rainfall Forecasts,” Wea. Forecasting, No. 2, 24 (2009).

    Google Scholar 

  31. C. A. Davis, B. Brown, and R. Bullock, “Object-based Verification of Precipitation Forecasts. Part I: Application to Convective Rain Systems,” Mon. Wea. Rev., No. 7, 134 (2006).

    Google Scholar 

  32. J. A. Done, C. A. Davis, and M. B. Weisman, “The Next Generation of NWP: Explicit Forecasts of Convection Using the Weather Research and Forecasting (WRF) Model,” Atmos. Sci. Lett., 5 (2004).

    Google Scholar 

  33. W. A. Gallus and M. Pfeifer, “Intercomparison of Simuiations Using 5WRF Microphysical Schemes with Dual-polarization Data for a German Squall Line,” Adv. Geosci., 16 (2008).

    Google Scholar 

  34. Hoddard Space Flight Center. LAADS WEB - Level 1 and Atmosphere Archive and Distribution System, https://ladsweb.nascom.nasa.gov/data/search.html.

  35. I. Jankov, J.-W. Bao, P. J. Neiman, et al., “Evaluation and Comparison of Microphysical Algorithms in ARW-WRF Model Simulations of Atmospheric River Events Affecting the California Coast,” J. Hydrometeorol., 10 (2009).

    Google Scholar 

  36. J. Litta, U. C. Mohanty, S. Das, and S. Mary Indicula, “Numerical Simulation of Severe Local Storms over East India Using WRF-NMM Mesoscale Model,” Atmos. Res., 116 (2012).

    Google Scholar 

  37. R. A. Maddox, “Mesoscale Convective Complexes,” Bull. Amer. Meteorol. Soc., 61 (1980).

  38. I. Orlanski, “A Rational Subdivision of Scales for Atmospheric Processes,” Bull. Amer. Meteorol. Soc., No. 5, 56 (1975).

    Google Scholar 

  39. C. S. Schwartz, J. S. Kain, S. J. Weiss, et al., “Next-day Convection-allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing,” Mon. Wea. Rev., No. 10, 137 (2009).

    Google Scholar 

  40. W. C. Skamarock et al., A Description of the Advanced Research WRF Version 3, NCAR Techn. Note-475 + STR (2008).

    Google Scholar 

  41. S. Sugimoto, N. Crook, J. Sun, et al., “An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation through Observing System Simulation Experiments,” Mon. Wea. Rev., No. 11, 137 (2009).

    Google Scholar 

  42. M. L. Weisman, C. Davis, W. Wang, et al., “Experiences with 0-36-h Explicit Convective Forecasts with the WRF-ARW Model,” Wea. Forecasting, No. 3, 23 (2008).

    Google Scholar 

  43. Y. Yang, Y. Wang, and K. Zhu, “Assimilation of Chinese Doppler Radar and Lightning Data Using WRF-GSI: Case Study of Mesoscale Convective System,” Adv. Meteorol. (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kalinin.

Additional information

Original Russian Text © N.A. Kalinin, A.N. Shikhov, A.V. Bykov, 2017, published in Meteorologiya i Gidrologiya, 2017, No. 1, pp. 16-28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, N.A., Shikhov, A.N. & Bykov, A.V. Forecasting mesoscale convective systems in the Urals using the WRF model and remote sensing data. Russ. Meteorol. Hydrol. 42, 9–18 (2017). https://doi.org/10.3103/S1068373917010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373917010022

Keywords

Navigation