Skip to main content
Log in

The field of integrated water vapor over northeastern Siberia from the data of global navigation satellite systems

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Seasonal and diurnal variations in integrated water vapor over northeastern Siberia derived from the data of global navigation satellite systems are considered. It is demonstrated that integrated water vapor is characterized by asymmetric annual variations with the maximum in July and with the minimum in February. The meridional gradient of integrated water vapor during the year varies from -8.7 mm/1000 km in July to -0.5 mm/1000 km in February. The zonal gradient reaches 1.0 mm/1000 km in July and -2.8 mm/1000 km in September. It is shown that the diurnal maximum of integrated water vapor is registered in the evening and at night and the amplitude of diurnal variations is 0.25-0.70 mm in summer and 0.08-0.21 mm in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Alisov and B. V. Poltaraus, Climatology (MGU, Moscow, 1974) [in Russian].

    Google Scholar 

  2. M. K. Gavrilova, Climate in Central Yakutia (Yakutskoye knizhnoe izdatelstvo, Yakutsk, 1962) [in Russian].

    Google Scholar 

  3. V. V. Kalinnikov, O. G. Khutorova, and G. M. Teptin, “Influence of Nonuniformity of the Atmospheric Water Vapor Field on the Phase Measurements of Radio Signals from Global Navigation Satellite Systems,” Izv. Vuzov. Radiofizika, No. 2 (2013) [Radiophys. Quantum El., No. 2, 56 (2013)].

    Google Scholar 

  4. V. V. Kalinnikov, O. G. Khutorova, and G. M. Teptin, “Determination of Troposphere Characteristics Using Signals of Satellite Navigation Systems,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 6, 48 (2012)].

    Google Scholar 

  5. L. T. Matveev, Fundamentals of General Meteorology. Atmospheric Physics (Gidrometeoizdat, Leningrad, 1965) [in Russian].

    Google Scholar 

  6. RD 52.27.724-2009. Manual for General-purpose Short-range Weather Forecasting (IG-SOTsIN, Obninsk, 2009) [in Russian].

  7. Yu. M. Timofeev, Global Monitoring System of Atmospheric and Surface Parameters (SPbGU, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  8. M. Bevis, S. Businger, C. Chiswell, et al., “GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water,” J. Appl. Meteorol., No. 3, 33 (1994).

    Google Scholar 

  9. E. W. Charlotte, A. B. Timothy, P. B. Chilson, et al., “Methods for Evaluating the Temperature Structure-function Parameter Using Unmanned Aerial Systems and Large-eddy Simulation,” Boundary-Layer Meteorol., 155 (2015).

  10. A. Dai and J. Wang, “Diurnal Variation in Water Vapor over North America and its Implications for Sampling Errors in Radiosonde Humidity,” J. Geophys. Res. Atmos., No. D10, 107 (2002).

    Google Scholar 

  11. J. Glowacki, N. T. Penna, and W. P. Bourke, “Validation of GPS-based Estimates of Integrated Water Vapor for the Australian Region and Identification of Diurnal Variability,” Austral. Meteorol. Mag., 55 (2006).

    Google Scholar 

  12. T. Gregorius, Gipsy-Oasis II: How It Works... (Univ. Newcastle upon Tyne, Newcastle upon Tyne, 1996).

    Google Scholar 

  13. L. Guoping, H. Dingfa, L. Biquan, et al., “Experiment on Driving Precipitable Water Vapor from Ground-based GPS Network in Chengdu Plain,” Geo-spatial Information Sci., 10 (2007).

    Google Scholar 

  14. S. Gutman, S. R. Sahm, S. G. Benjamin, et al., “GPS Water Vapor Observation Errors,” in The 84th AMSAnnual Meeting (Seattle (WA), USA, 10-16 January 2004), 8.3 (2004).

    Google Scholar 

  15. R. Haas, T. Ning, and G. Elgered, “Long-term Trend in the Amount of Atmospheric Water Vapour Derived from Space Geodetic and Remote Sensing Techniques,” in ESA Proceedings WPP 326, Proceedings of 3rd International Colloquium on Scientific and Fundamental Aspects of the Galileo Programme (Copenhagen, Denmark, 31 August-2 September 2011).

  16. E. Jakobson, H. Ohvril, and G. Elgered, “Diurnal Variability of Precipitable Water in the Baltic Region, Impact on the Transmittance of the Direct Solar Radiation,” Boreal Environ. Res., 14 (2009).

  17. V. B. Mendes, Modeling the Neutral-atmospheric Propagation Delay in Radiometric Space Techniques. Tech. Report No. 199 (UNB, New Brunswick, 1999).

    Google Scholar 

  18. J. Morland, M. Collaud Coen, K. Hocke, et al., “Tropospheric Water Vapour above Switzerland over the Last 12 Years,” Atmos. Chem. Phys., 9 (2009).

    Google Scholar 

  19. R. Pacione, E. Fionda, R. Ferrara, et al., “Comparison of Atmospheric Parameters Derived from GPS, VLBI and a Ground-based Microwave Radiometer in Italy,” Physics and Chemistry of the Earth, 27 (2002).

    Google Scholar 

  20. S. Raju, K. Saha, V. T. Bijoy, et al., “Measurement of Integrated Water Vapor over Bangalore Using Ground Based GPS Data,” in Proceedings ofURSI General Assembly (New Delhi, India, 23-29 October 2005).

  21. J. M. Rueger, Refractive Indices of Light, Infrared and Radio Waves in the Atmosphere, UNISURVReport S-68 (UNSW, Sydney, 2002).

    Google Scholar 

  22. L. Sapucci, L. Machado, J. Monico, et al., “Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region,” J. Atmos. Ocean. Tech., 24 (2007).

    Google Scholar 

  23. B. Schmid, J. J. Michalsky, D. W. Slater, et al., “Comparison of Columnar Water-vapor Measurements from Solar Transmittance Methods,” Appl. Opt., 40 (2001).

    Google Scholar 

  24. J. Shuanggen, Z. Li, and J. Choa, “Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements,” J. Appl. Meteorol. Climatol., 47 (2008).

    Google Scholar 

  25. F. S. Solheim, J. Vivekanandan, R. H. Ware, et al., “Propagation Delays Induced in GPS Signals by Dry Air, Water Vapor, Hydrometeors, and Other Particulates,” J. Geophys. Res. Atmos., No. D8, 104 (1999).

    Google Scholar 

  26. G. Xu, GPS. Theory, Algorithms and Applications (Springer, Berlin, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kalinnikov.

Additional information

Original Russian Text © V.V. Kalinnikov, O.G. Khutorova, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 10, pp. 5-15.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinnikov, V.V., Khutorova, O.G. The field of integrated water vapor over northeastern Siberia from the data of global navigation satellite systems. Russ. Meteorol. Hydrol. 41, 665–672 (2016). https://doi.org/10.3103/S1068373916100010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373916100010

Keywords

Navigation