Skip to main content
Log in

Eddies in the ocean and atmosphere: Identification by satellite imagery

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The results are presented of using a new approach that helps to detect and compute the parameters of eddies in the ocean and tropical cyclones in the atmosphere based on satellite imagery. The approach is based on the concept of dominant orientation of thermal contrasts (DOTC). DOTC is an angle of the statistically significant orientation of brightness contrast in the specified vicinity of the image. DOTC highly correlates with the directions of flows; it is a base for construction of models for identification of eddy motions, namely, synoptic eddies in the oceans and tropical cyclones in the atmosphere. The model-based identification of one or another eddy allows estimating such parameters as the center position, shape, size, and sign (cyclone or anticyclone) of the eddy, and the size of the tropical cyclone eye. Based on the proposed approach, technologies of automatic identification and monitoring of oceanic eddies and tropical cyclones are developed. The results of the practical use of these technologies are presented for the recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. O. Agurenko, A. M. Kolesov, A. A. Korshunov, et al., “Estimation of Economic Value of Satellite Data for Predicting Convective Events during the Warm Season,” Meteorol. Gidrol., No. 5 (2014) [Russ. Meteorol. Hydrol., No. 5, 39 (2014)].

  2. A. I. Aleksanin and M. G. Aleksanina, “Automatic Identification of Eddies from Satellite Infrared Imagery,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 1 (2004) [in Russian].

    Google Scholar 

  3. A. I. Aleksanin and M. G. Aleksanina, “Identification of Synoptic Oceanic Eddies and Estimation of Their Spatial Parameters from the NOAA Satellite Data,” in Visualization in the Studies of World Ocean Biological Resources: Proceedings of the Sectoral Workshop (TINRO-Tsentr, Vladivostok, 2003) [in Russian].

    Google Scholar 

  4. A. I. Aleksanin and M. G. Aleksanina, “Investigating the Composite Fields of Thermal Structures on the Sea Surface under Cloudy Conditions from the NOAA Satellite Data,” Solnechno-zemnaya Fizika, No. 5 (2004) [in Rus sian].

  5. A. I. Aleksanin, M. G. Aleksanina, and I. I. Gorin, “Satellite Infrared Images: From Thermal Structures to the Velocity Field,” Issledovanie Zemli iz Kosmosa, No. 2 (2001) [in Russian].

  6. A. I. Aleksanin, M. G. Aleksanina, and A. Yu. Karnatskii, “Automatic Computation of Sea Surface Velocities by a Sequence of Satellite Images,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 10 (2013) [in Russian].

    Google Scholar 

  7. A. I. Aleksanin and A. S. Eremenko, “Automatic Computation of Tropical Cyclone Trajectories from MTSAT_1R Geostationary Satellite Data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 4 (2007) [in Russian].

    Google Scholar 

  8. A. I. Aleksanin and A. S. Eremenko, “Automatic Computation of Tropical Cyclone Trajectories from Meteorological Geostationary Satellite Data,” Issledovanie Zemli iz Kosmosa, No. 5 (2009) [in Russian].

  9. A. I. Aleksanin and A. A. Zagumennov, “Automatic Identification of Oceanic Eddies and Computation of Their Shape,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 5 (2008) [in Russian].

    Google Scholar 

  10. A. I. Aleksanin and A. A. Zagumennov, “Problems of Automatic Identification of Oceanic Eddies from Satellite Infrared Imagery,” Issledovanie Zemli iz Kosmosa, No. 3 (2011) [in Russian].

  11. M. G. Aleksanina, “Automatic Identification of Sea Surface Structures from NOAA Satellite Infrared Data,” Issledovanie Zemli iz Kosmosa, No. 3 (1997) [in Russian].

  12. Z. V. Andreeva, “Using the Optical and Radar Satellite Images for the Analysis of Ecological Conditions in the Marine Environment,” Meteorol. Gidrol., No. 2 (2013) [Russ. Meteorol. Hydrol., No. 2, 38 (2013)].

  13. A. I. Ginzburg, A. G. Kostyanoi, and A. G. Ostrovskii, “Surface Circulation in the Sea of Japan (Satellite and Drifting Buoy Data),” Issledovanie Zemli iz Kosmosa, No. 1 (1998) [in Russian].

  14. A. S. Eremenko, Automatic Monitoring of Tropical Cyclones from Meteorological Satellite Data, Abstracts of the Candidate’s Dissertation in Technical Sciences (Institute of Automation and Control Processes of FEB RAS, Vladivostok, 2014) [in Russian].

    Google Scholar 

  15. A. S. Eremenko, “Trial Operation of the System of Automatic Monitoring of Tropical Cyclones,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 10 (2013) [in Russian].

    Google Scholar 

  16. A. S. Eremenko and D. A. Bolovin, “The System of Automatic Detection of Tropical Cyclones and Computation of Their Geometric and Thermodynamic Parameters,”in Proceedings of the Conference “The Use of the Means and Resources of the Unified Na tional System of Information on World Ocean Conditions for Informational Support of Marine Activities in the Russian Federation” (ESIMO-2012) (VNIIGMI-MTsD, Obninsk, 2012) [in Russian].

    Google Scholar 

  17. A. S. Eremenko, V. S. Eremenko, and I. V. Nedoluzhko, “Organization of Automatic Calculation and Delivery of Tropical Cyclone Trajectories to ESIMO,” Geoinformatika, No. 4 (2014) [in Russian].

  18. A. A. Zagumennov, “Trial Operation of the System of Operational Automatic Monitoring of Synoptic Oceanic Eddies from the Satellite Data,” in Mathematical Modeling and Information Technologies in the Studies of World Ocean Biological Resources. Proceedings of the Sectoral Workshop (TINRO-Tsentr, Vladivostok, 2013) [in Russian].

    Google Scholar 

  19. O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, et al., Complex Satellite Monitoring of the Russian Seas (IKI RAN, Moscow, 2011) [in Russian].

    Google Scholar 

  20. M. S. Permyakov and E. Yu. Potalova, “Mesoscale Structure of Tropical Cyclones,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 10 (2013) [in Russian].

    Google Scholar 

  21. L. I. Petrova, “Estimating the Maximum Potential Intensity of Tropical Cyclones,” Meteorol. Gidrol., No. 6 (2010) [Russ. Meteorol. Hydrol., No. 6, 35 (2010)].

  22. L. I. Petrova, “Radial Structure of Tangential Wind in a Tropical Cyclone as Derived from Observation Data,” No. 3 (1995) [Russ. Meteorol. Hydrol., No. 3 (1995)].

  23. I. V. Pokrovskaya and E. A. Sharkov, Tropical Cyclones and Tropical Disturbances of the World Ocean: Chronology and Evolution (2006-2010). Version 4.1 (KDU, Moscow, 2011) [in Russian].

    Google Scholar 

  24. E. Yu. Potalova, M. S. Permyakov, and T. I. Kleshcheva, “Mesoscale Structure of Tropical Cyclones in the Surface Wind Field,” Meteorol. Gidrol., No. 11 (2013) [Russ. Meteorol. Hydrol., No. 11, 38 (2013)].

  25. Recommendations on the Use of Satellite Infrared Images in Oceanological Studies (TINRO, Vladivostok, 1984) [in Russian].

  26. D. M. Sonechkin, Meteorological Interpretation of Satellite Images (Quantitative Methods) (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  27. N. I. Tolmacheva, Space Research Methods in Meteorology. Interpretation of Satellite Imagery (Permskii Gos. Nats. Issled. Univ., Perm, 2012) [in Russian].

    Google Scholar 

  28. K. N. Fedorov, Physical Nature and Structure of Oceanic Fronts (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  29. K. S. Casey and P. Cornillo, “A Comparison of Satellite and in Situ-based Sea Surface Temperature Climatologies,” J. Climate, 12 (1999).

    Google Scholar 

  30. M. Castellani, “Identification of Eddies from Sea Surface Temperature Maps with Neural Networks,” Int. J. Remote Sensing, 27 (2006).

    Google Scholar 

  31. C. Dong, F. Nencioli, Y. Liu, and J. McWilliams, “An Automated Approach to Detect Oceanic Eddies from Satellite Remotely Sensed Sea Surface Temperature Data,” IEEE Geoscience and Remote Sensing Lett., No. 6, 8 (2011).

    Google Scholar 

  32. V. F. Dvorak, “Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery,” Mon. Wea. Rev., 103 (1975).

    Google Scholar 

  33. A. M. Fernandes, “Study of the Automatic Recognition of Oceanic Eddies in Satellite Images by Ellipse Center Detection—The Iberian Coast Case,” IEEE Transaction of Geoscience and Remote Sensing, No. 8, 47 (2009).

    Google Scholar 

  34. J. Hai, Y. Xiaomei, G. Jianming, and G. Zhenyu, “Automatic Eddy Extraction from SST Imagery Using Artificial Neural Networks,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Pt B6b, 37 (2008).

    Google Scholar 

  35. B. Lemonnier, R. Delmas, C. Lopez, and E. Duporte, “Multiscale Analysis of Shapes Applied to Thermal Infrared Sea Images,” in Proceedings of Ocean’94 OSATES, Brest, France, 13-16 September, Vol. 3 (Brest, 1994).

  36. T. L. Pao, J. H. Yeh, M. Y. Liu, and Y. C. Hsu, “Locating the Typhoon Center from the IR Satellite Cloud Images,” Proc. System, Man and Cybernetics, 1 (2006).

    Google Scholar 

  37. H. Thornet, B. Lemmonier, and R. Delmas, “Automatic Segmentation of Oceanic Eddies on AVHRR Thermal Infrared Sea Surface Images,” in Proceedings of OCEANS’95, Vol. 2 (San Diego, 1995).

    Google Scholar 

  38. W. K. Yan, C. L. Yip, P. W. Li, and W. W. Tsang, “Automatic Template Matching Method for Tropical Cyclone Eye Fix,” in 17th International Conference on Pattern Recognition (ICPR’04), Vol. 3 (2004).

    Google Scholar 

  39. A. A. Zagumennov, “Automatic System for Monitoring of Mesoscale Ocean Eddies Using Remote Sensing Data,” in Remote Sensing of Environment: Scientific and Applied Research in Asia-Pacific (RSAP2013): Abstracts of the International Conference, 24-27 September 2013, Vladivostok, Russia (Dalnauka, Vladivostok, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Aleksanina.

Additional information

Original Russian Text © M.G. Aleksanina, A.S. Eremenko, A.A. Zagumennov, V.A. Kachur, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 9, pp. 41-54.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksanina, M.G., Eremenko, A.S., Zagumennov, A.A. et al. Eddies in the ocean and atmosphere: Identification by satellite imagery. Russ. Meteorol. Hydrol. 41, 620–628 (2016). https://doi.org/10.3103/S1068373916090041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373916090041

Keywords

Navigation