Skip to main content
Log in

Investigations of the development of thunderstorm with hail. Part 1. Cloud development and formation of electric discharges

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The results of synchronous radar, radiometric, and lightning-detection measurements are analyzed to reveal interrelations between the parameters of electric discharges and the parameters of cumulonimbus clouds developing in the North Caucasus. The dependences of electric activity of the cloud on radar parameiers as well as on the parameiers reirieved from Meteosat SEVIRI radiometer measurements are considered. Electric discharges (intracloud discharges and lightnings) were registered for 1 hour 40 minutes (the maximum frequency was equal to 448 discharges per minute). The relation ships are identified that connect the parameters of electric discharges with the precipitation rate and with the field of cloud top temperaiure. It was found that the frequency of eleciric discharges increases as the precipitation rate increases. The maximum frequency is reached at the precipitation rate equal to 70 mm/hour. Normalized autocorrelation functions ofthe field ofcloud top temperature retrieved from the satellite data are constructed. The high correlation is revealed between the scale of inhomogeneity of the field of cloud top temperature and the frequency of electrical discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Abshaev, “Structure and Dynamics of Development of Thunder-hail Processes in the North Caucasus,” Trudy VGI, No. 53 (1984) [in Russian].

  2. A. Kh. Adzhiev, V. N. Stasenko, and V. O. Tapaskhanov, “Lightning Detection System in the North Caucasus,” Meteorol. Gidrol., No. 1 (2013) [Russ. Meteorol. Hydrol., No. 1, 38 (2013)].

  3. V. I. Bekryaev, Yu. F. Ponomarev, A. A. Sin’kevich, and E. V. Chubarina, “The Results of Studying the Process of Crystallization of Convective Clouds after the Seeding,” in {utProblems of Cloud Physics} (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  4. Yu. A. Dovgalyuk, A. D. Egorov, E. N. Stankova, et al., “Studying the Process of Transformation of a Cumulus Congestus Cloud into a Cumulonimbus Cloud after the Seeding,”in Weather Modification (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  5. I. M. Imyanitov, Electrization of Aircrafts in the Clouds and Precipitation (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  6. I. M. Imyanitov, E. V. Chubarina, and Ya._M. Shvarts, Cloud Electricity (Gidrometeoizdat, Leningrad, 1971) [in Russian].

    Google Scholar 

  7. E. E. Kornienko, “Structure and Evolution of Some Types of Cumulonimbus Clouds,” Trudy UkrNIGMI, No. 172 (1980) [in Russian].

  8. T. W. Krauss, A. A. Sinkevich, N. E. Veremei, et al., “Complex Study of Characteristics of a Cb Cloud Developing over the Arabian Peninsula under High Dew Point Deficit in the Atmosphere. Part 1. Field Observations and Numerical Modeling,” Meteorol. Gidrol., No. 2 (2011) [Russ. Meteorol. Hydrol., No. 2, 36 (2011)].

  9. Yu. P. Mikhailovskii, “Empirical Model of Electrically Active Convective Clouds and Potential of Its Application to Test a Numerical Model,” Trudy NITs DZA, No. 4 (2002) [in Russian].

  10. Yu. P. Mikhailovskii, A. N. Efremenko, V. Yu. Zhukov, et al., “Parameterization of Electric State of Convective Clouds Based on the Data of Passive-active Radiolocation,” in Proceedings of the 28th All-Russian Symposium “Radar /nvestigation of Natural Environments,” Vol. 2 (St. Petersburg, 2013) [in Russian].

    Google Scholar 

  11. Yu. P. Mikhailovskii and L. V. Kashleva, “Methods and Results of Studying the Electrization of Convective Clouds Using Aircrafts,” in Trans. MGO “Radar Meteorology and Weather Modification” (MGO, St. Petersburg, 2012) [in Russian].

    Google Scholar 

  12. V. M. Orlov, G. G. Matvienko, I. V. Samokhvalov, et al., Application of Correlation Methods to Atmospheric Optics (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  13. A. A. Sin’kevich, Convective Clouds in Northwestern Russia (Gidrometeoizdat, Leningrad, 1990) [inRussian].

    Google Scholar 

  14. A. A. Sin’kevich, N. E. Veremei, Yu. A. Dovgalyuk, and V. D. Stepanenko, Laboratory Modeling of Corona Discharge in Clouds (Asterion, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  15. A. A. Sin’kevich and Yu. A. Dovgalyuk, “Corona Discharge in Clouds,” Radiofizika, No. 11-12, 56 (2014) [Radiophysics and Quantum Electronics, No. 11-12, 56 (2014)].

    Google Scholar 

  16. Yu. P. Sumin and Ya. M. Shvarts, “The Electric Field in the Vicinity of the Seeded Cumulus Clouds,” Trudy GGO, No. 262 (1971) [in Russian].

  17. N. S. Shishkin, Clouds, Precipitation, and Thunderstorm Electricity (Gidrometeoizdat, Leningrad, 1964) [in Russian].

    Google Scholar 

  18. S. M. Shmeter, Thermodynamics and Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  19. M. B. Baker, H. J. Christian, and J. Latham, “A Computational Study of the Relationship Linking Lightning Frequency and Other Thundercloud Parameters,” Quart. J. Roy. Meteorol. Soc., No. 527, 121 (1995).

    Google Scholar 

  20. L. D. Carey and S. T. Rutledge, “The Relationship between Precipitation and Lightning in Tropical Island Convection: AC-band Polarimetric Radar Study,” Mon. Wea. Rev., No. 8, 128 (2000).

    Google Scholar 

  21. D. J. Cecil, S. J. Goodman, D. J. Boccippio, et al., “Three Years of TRMM Precipitation Features. Part I: Radar, Radiometers, and Lightning Characteristics,” Mon. Wea. Rev., No. 3, 133 (2005).

    Google Scholar 

  22. D. J. Cecil and E. J. Zipser, “Reflectivity, Ice Scattering, and Lightning Characteristics of Hurricane Eyewalls and Rainbands. Part II: Intercomparison of Observations,” Mon. Wea. Rev., No. 4, 130 (2002).

    Google Scholar 

  23. W. Deierling and W. A. Petersen, “Total Lightning Activity as an Indicator of Updraft Characteristics,” J. Geophys. Res., No. D16, 113 (2008).

    Google Scholar 

  24. T. Fehr, N. Dotzek, and H. Holler, “Comparison of Lightning Activity and Radar-retrieved Microphysical Properties in EULINOX Storms,” Atmos. Res., No. 2, 76 (2005).

    Google Scholar 

  25. B. Gungle and E. P. Krider, “Cloud-to-ground Lightning and Surface Rainfall in Warm-season Florida Thunderstorms,” J. Geophys. Res., No. D19, 111 (2006).

    Google Scholar 

  26. L. de Leonibus, D. Biron, C. Giorgi, et al., Study on the Present Status and Future Capabilities of Ground-based Lightning Location Networks, Final Report, EUM/CO/06/1584/KJG (2007).

    Google Scholar 

  27. C. Liu, D. J. Cecil, E. J. Zipser, et al., “Relationships between Lightning Flash Rates and Radar Reflectivity Vertical Structures in Thunderstorms over the Tropics and Subtropics,” J. Geophys. Res., No. D06, 117 (2012).

    Google Scholar 

  28. D. R. MacGorman and W. D. Rust, The Electrical Nature of Storms (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  29. A. T. Pessi and S. Businger, “Relationships among Lightning, Precipitation, and Hydrometeor Characteristics over the North Pacific Ocean,” J. Appl. Meteorol. Climatol., No. 4, 48 (2009).

    Google Scholar 

  30. W. A. Petersen, H. J. Christian, and S. A. Rutledge, “TRMM Observations of the Global Relationship between Ice Water Content and Lightning,” Geophys. Res. Lett., No. 14, 32 (2005).

    Google Scholar 

  31. W. A. Petersen and S. A. Rutledge, “Regional Variability in Tropical Convection: Observations from TRMM,” J. Climate, 14 (2001).

    Google Scholar 

  32. C. Price and D. Rind, “A Simple Lightning Parameterization for Calculating Global Lightning Distributions,” J. Geophys. Res., No. D9, 97 (1992).

    Google Scholar 

  33. C. Price and D. Rind, “What Determines the Cloud-to-ground Fraction in Thunderstorms?”, Geophys. Res. Lett., No. 6, 20 (1993).

    Google Scholar 

  34. T. Ushio, S. J. Heckman, D. J. Boccippio, et al., “A Survey of Thunderstorm Flash Rates Compared to Cloud Top Height Using TRMM Satellite Data,” J. Geophys. Res., No. D20, 106 (2001).

    Google Scholar 

  35. E. R. Williams, “Large-scale Charge Separation in Thunderclouds,” J. Geophys. Res., No. D4, 90 (1985).

    Google Scholar 

  36. E. R. Williams and S. G. Geotis, “A Radar Study of the Plasma and Geometry of Lightning,” J. Atmos. Sci., No. 9, 46 (1989).

    Google Scholar 

  37. E. J. Zipser and K. R. Lutz, “The Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability?”, Mon. Wea. Rev., No. 8, 122 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Veremei.

Additional information

Original Russian Text © A.A. Sin’kevich, Yu.P. Mikhailovskii, Yu.A. Dovgalyuk, N.E. Veremei, E.V. Bogdanov, A.Kh. Adzhiev, A.M. Malkarova, A.M. Abshaev, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 9, pp. 27-40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin’kevich, A.A., Mikhailovskii, Y.P., Dovgalyuk, Y.A. et al. Investigations of the development of thunderstorm with hail. Part 1. Cloud development and formation of electric discharges. Russ. Meteorol. Hydrol. 41, 610–619 (2016). https://doi.org/10.3103/S106837391609003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106837391609003X

Keywords

Navigation