Skip to main content
Log in

Field Experiments and Numerical Modeling of Wind Speed and Surface Waves in Medium-size Inland Reservoirs

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

An attempt is made to apply the modern methods of surface wave simulation developed for oceanic conditions to the modeling of waves in medium-size inland reservoirs (10–100 km). The results of field measurements of wind speed and waves are described, and on their basis the parameterization C D (U 10) is proposed. WAVEWATCH III spectral wave model was adapted to the conditions of a medium-size inl and reservoir. The simulated data are compared with the field data. The use of the new parameterization C D (U 10) allowed reducing the values of the wind wave growth rate that improved consistency in data from the field experiment and numerical modeling concerning the height of significant waves. Further steps towards improving the quality of prediction of the adapted WAVEWATCH III model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Golitsyn, “The Energy Cycle of Wind Waves on the Sea Surface,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 46 (2010) [Izv., Atmos. Oceanic Phys., No. 1, 46 (2010)].

    Google Scholar 

  2. S. A. Poddubnyi and E. V. Sukhova, Modeling the Effects of Hydrodynamic and Anthropogenic Factors on the Distribution of Hydrobionts in Reservoirs. User’s Manual (Rybinskii Dom Pechati, Rybinsk, 2002) [in Russian].

    Google Scholar 

  3. O. G. Setton, Micrometeorology (Gidrometeoizdat, Leningrad, 1958) [Transl. from Engl.]

    Google Scholar 

  4. E. N. Sutyrina, “Determination of Wave Characteristics in the Bratsk Reservoir,” Izvestiya Irkutskogo Gosudarstvennogo Universiteta, No. 2, 4 (2011) [in Russian].

    Google Scholar 

  5. G. M. Alves Jose-Henrique, A. Chawla, H. L. Tolman, et al., “The Great Lakes Wave Model at NOAA/NCEP: Challenges and Future Developments,” in 12th International Workshop on Wave Hindcasting and Forecasting, Kohala Coast, Hawaii, HI (2011).

    Google Scholar 

  6. G. M. Alves Jose-Henrique, A. Chawla, H. L. Tolman, et al., “The Operational Implementation of a Great Lakes Wave Forecasting System at NOAA/NCEP,” Wea. Forecasting, 29 (2014).

    Google Scholar 

  7. S. S. Atakturk and K. B. Katsaros, “Wind Stress and Surface Waves Observed on Lake Washington,” J. Phys. Oceanogr., 29 (1999).

    Google Scholar 

  8. A. V. Babanin and V. K. Makin, “Effects of Wind Trend and Gustiness on the Sea Drag: Lake George Study,” J. Geophys. Res., 113 (2008).

    Google Scholar 

  9. S. E. Belcher and J. C. R. Hunt, “Turbulent Shear Flow over Slowly Moving Waves,” J. Fluid Mech., 251 (1993).

    Google Scholar 

  10. B. T. Brooke, “Shearing Flow over a Wavy Boundary,” J. Fluid Mech., 11 (1959).

    Google Scholar 

  11. M. A. Donelan, W. M. Drennan, and A. K. Magnusson, “Nonstationary Analysis of the Directional Properties of Propagating Waves,” J. Phys. Oceanogr., No. 9, 26 (1996).

    Google Scholar 

  12. C. W. Fairall, E. F. Bradley, J. E. Hare, et al., “Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm,” J. Climate, 16 (2003).

    Google Scholar 

  13. C. W. Fairall and S. E. Larsen, “Inertial-dissipation Methods and Turbulent Fluxes at the Air-Ocean Interface,” Bound ary-Layer Meteorol., 34 (1986).

    Google Scholar 

  14. H. Gunter, S. Hasselmann, and P. A. E. M. Janssen, The WAM Model Cycle 4. Technical Report No. 4. KRZ WAM4 Model Documentation (Hamburg, 1992).

    Google Scholar 

  15. S. Hasselmann and K. Hasselmann, “Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-wave Spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral,” J. Phys. Oceanogr., 15 (1985).

    Google Scholar 

  16. S. Hasselmann, K. Hasselmann, J. H. Allender, and T. P. Barnett, “Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-wave Spectrum. Part II: Parameterizations of Nonlinear Energy Transfer for Application in Wave Models,” J. Phys. Oceanogr., 15 (1985).

    Google Scholar 

  17. T. J. Hesser, M. A. Cialone, and M. E. Anderson, Lake St. Clair: Storm Wave and Water Level Modeling (The US Army Research and Development Center (ERDC), 2013).

    Google Scholar 

  18. http://polar.ncep.noaa.gov/waves/viewer.shtml7-glw-latest-hs-grl.

  19. G. L. Komen, S. Hasselmann, and K. Hasselmann, “On the Existence of a Fully Developed Wind-sea Spectrum,” J. Phys. Oceanogr., No. 9, 14 (1984).

    Google Scholar 

  20. L. J. Lopatoukhin, A. V. Boukhanovsky, E. S. Chernyshova, and S. V. Ivanov, “Hindcasting of Wind and Wave Climate of Seas around Russia,” in Proceedings of the 8th International Workshop on Waves Hindcasting and Forecasting. North Shore, Oahu, Hawaii, November 14–19, 2004.

    Google Scholar 

  21. J. W. Miles, “On the Generation of Surface Waves by Shear Flows,” J. Fluid Mech., 3 (1957).

    Google Scholar 

  22. M. Newton-Matza, Disasters and Tragic Events: An Encyclopedia of Catastrophes in American History (California, Santa Barbara, 2014).

    Google Scholar 

  23. R. L. Snyder, F. W. Dobson, J. A. Elliot, and R. B. Long, “Array Measurements of Atmospheric Pressure Fluctuations above Surface Gravity Waves,” J. Fluid Mech., 102 (1981).

    Google Scholar 

  24. SWAN Team. SWAN—User Manual (Delft University of Technology, Environmental Fluid Mechanics Section, 2006).

  25. H. L. Tolman and WAVEWATCH III Development Group, User Manual and System Documentation of WAVEWATCH III Version 4.18 (Environmental Modeling Center, Marine Modeling and Analysis Branch, 2014).

    Google Scholar 

  26. Yu. I. Troitskaya, D. A. Sergeev, A. A. Kandaurov, et al., “Laboratory and Theoretical Modeling of Air-Sea Momentum Transfer under Severe Wind Conditions,” J. Geophys. Res., 117 (2012).

    Google Scholar 

  27. R. O. Weber, “Remarks on the Definition and Estimation of Friction Velocity,” Boundary-Layer Meteorol., 93 (1999).

    Google Scholar 

  28. J. Wu, “Wind-stress Coefficients over Sea Surface from Breeze to Hurricane,” J. Geophys. Res., 87 (1982).

    Google Scholar 

  29. V. E. Zakharov, “On the Domination of Nonlinear Wave Interaction in the Energy Balance of Wind-driven Sea,” in Proceedings of 11th Wave Workshop, Halifax, Canada (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kuznetsova.

Additional information

Original Russian Text © A.M. Kuznetsova, G.A. Baidakov, V.V. Papko, A.A. Kandaurov, M.I. Vdovin, D.A. Sergeev, Yu.I. Troitskaya, 2016, published in Meteorologiya i Gidrologiya, 2016, No. 2, pp. 85-97.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, A.M., Baidakov, G.A., Papko, V.V. et al. Field Experiments and Numerical Modeling of Wind Speed and Surface Waves in Medium-size Inland Reservoirs. Russ. Meteorol. Hydrol. 41, 136–145 (2016). https://doi.org/10.3103/S1068373916020084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373916020084

Keywords

Navigation